검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 760

        1.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to experimentally analyze the seismic performance of beam-column specimens with vertical irregular, which were reinforced with RHS (Replaceable steel haunch system). a steel haunch system. To evaluate the seismic performance of the RHS, three specimens were manufactured and subjected to cycle loading tests. Retrofitted specimens have different beam-upper column stiffness ratio as a variable. The stiffness ratio of beam-upper column were considered to be 1.2 and 0.84. As a result of the test, the specimen reinforced with RHS showed improved maximum load and effective stiffness, and energy dissipation capacity compared to the non-retrofitted specimen with same beam-upper column stiffness ratio. The specimen with 0.84 beam-upper column stiffness ratio showed improved performance than the specimen with 12.
        4,000원
        2.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper aims to advance our understanding of extensible beams with multiple cracks by presenting a crack energy and motion equation, and mathematically justifying the energy functions of axial and bending deformations caused by cracks. Utilizing an extended form of Hamilton's principle, we derive a normalized governing equation for the motion of the extensible beam, taking into account crack energy. To achieve a closed-form solution of the beam equation, we employ a simple approach that incorporates the crack's patching condition into the eigenvalue problem associated with the linear part of the governing equation. This methodology not only yields a valuable eigenmode function but also significantly enhances our understanding of the dynamics of cracked extensible beams. Furthermore, we derive a governing equation that is an ordinary differential equation concerning time, based on orthogonal eigenmodes. This research lays the foundation for further studies, including experimental validations, applications, and the study of damage estimation and detection in the presence of cracks.
        4,000원
        3.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study numerically compares optimum solutions generated by element- and node-wise topology optimization designs for free vibration structures, where element-and node-wise denote the use of element and nodal densities as design parameters, respectively. For static problems optimal solution comparisons of the two types for topology optimization designs have already been introduced by the author and many other researchers, and the static structural design is very common. In dynamic topology optimization problems the objective is in general related to maximum Eigenfrequency optimization subject to a given material limit since structures with a high fundamental frequency tend to be reasonable stiff for static loads. Numerical applications topologically maximizing the first natural Eigenfrequency verify the difference of solutions between element-and node-wise topology optimum designs.
        4,000원
        4.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aims to examine the cutting traces remaining on the bracket tie beams of Sungnyemun gate, identifying the tools employed during the late Goryeo to early Joseon periods by specific processes, and deliberating on the timber shaping techniques utilized in advanced architectural construction during the late Goryeo to early Joseon eras. Through the research, it was confirmed that in the production of Sungnyemun Gate's bracket tie beams during the 14th to 15th centuries, both the timber splitting and ripsawing methods were used in conjunction. Moreover, the wood finishing process revealed the use of a plane. It can be inferred that the characteristics of the plane used during that time were not significantly different from those observed in the later period of the Joseon dynasty. The ripsawing and plane finishing techniques were evident in various parts of the bracket tie beams of Sungnyemun gate across the reigns of king Taejo and Sejong, indicating that the techniques involving ripsaw and plane were already prevalent in the late Goryeo period. Consequently, it can be inferred that the ripsawing and plane finishing techniques might have been applied in the construction of prominent government buildings in Hanyang(Seoul), including Gyeongbokgung Palace, and in the residences of royalty and nobility after the establishment of the Joseon dynasty.
        4,900원
        5.
        2023.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        ZnO/Cu/ZnO (ZCZ) thin films were deposited at room temperature on a glass substrate using direct current (DC) and radio frequency (RF, 13.56 MHz) magnetron sputtering and then the effect of post-deposition electron irradiation on the structural, optical, electrical and transparent heater properties of the films were considered. ZCZ films that were electron beam irradiated at 500 eV showed an increase in the grain sizes of their ZnO(102) and (201) planes to 15.17 nm and 11.51 nm, respectively, from grain sizes of 13.50 nm and 10.60 nm observed in the as deposited films. In addition, the film’s optical and electrical properties also depended on the electron irradiation energies. The highest opto-electrical performance was observed in films electron irradiated at 500 eV. In a heat radiation test, when a bias voltage of 18 V was applied to the film that had been electron irradiated at 500 eV, its steady state temperature was about 90.5 °C. In a repetition test, it reached the steady state temperature within 60 s at all bias voltages.
        4,000원
        7.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The flaw of low dispersibility in the metal matrix brought on by graphene's full crystal structure can be improved by the application of ion beam radiation to the surface of the material. Copper atoms are uniformly dispersed on the modified graphene oxide ( GOM) surface after being irradiated to a copper ion beam, and during the sputtering modification, the valence state of copper is changed, resulting in the formation of a new CuO phase on the graphene oxide (GO) surface. Therefore, after copper ion beam irradiation of graphene, the interfacial adhesion between GOM and copper matrix is enhanced, and the wear resistance is significantly improved. When the GOM content is low, it can withstand most of the load during the friction and wear test, which reduces the wear of the copper matrix and the occurrence of fatigue cracks at the interface of the composite material.
        4,200원
        8.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The automotive industry continuously strives to enhance safety for both drivers and passengers through technological advancements. Car side impacts have the potential to significant risks to passengers, So the automotive industry has proposed various technological solutions. As part of these efforts, the development of side impact beams, which are affixed to the inner frame of vehicle side doors to absorb and dissipate collision energy, has been a safety enhancement. Conventional side impact beams are manufactured using hot-rolled steel sheets and have a pipe-like configuration. However, these impact beams are fixed to the vehicle's chassis, which directly transfers the energy generated during a collision to the chassis frame. This paper aims to address this issue by proposing the development and optimization of vehicle door impact beams using a dual-beam structure and fastening method, utilizing shear bolts. Moreover, the focus is on optimizing the cross-sectional shape of the dual-beam impact structure. The evaluation criterion for optimization is based on the second moment of area of the cross-section. To validate these improvements, Static experiments were conducted, comparing the proposed dual-beam structure with the traditional impact beam. This research is expected to serve as a guideline for enhancing vehicle safety through design directions and validation methods.
        4,000원
        9.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        철근콘크리트는 가장 널리 사용되는 건축자재로 최근 노후 시설물이 증가하면서 노후 구조물에 대한 안전성 검토가 매우 중요한 문제로 대두되고 있다. 본 연구에서는 대표적인 열화 인자인 동결융해와 철근부식 그리고 동결융해와 철근부식의 복합적 열화에 따른 RC 휨 부재의 거동을 실험적으로 평가하였다. 4개의 철근콘크리트 휨 부재를 제작하였으며 각 열화 인자에 따른 RC 휨 부재의 거동을 평가하기 위해 4점 재하법을 이용하여 정적실험을 수행하였다. 동결융해는 총 300 사이클의 급속동 결융해실험을 수행하였으며, 부식은 전위차부식촉진실험을 수행하였다. 실험 결과, 동결융해로 인해 콘크리트의 압축강도가 12% 감소하였으며 RC 보 부재의 상부 압축부의 파쇄 범위가 증가하였고 최대강도가 6% 감소하였다. 철근부식으로 인해 RC 휨 부 재의 항복강도가 1.2%, 최대강도가 7% 감소하였으며, 복합열화로 인해 RC 휨 부재의 항복강도가 2.4%, 최대강도가 9% 감소하 였다.
        4,000원
        11.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        For fast-built and safe precast concrete (PC) construction, the dry mechanical splicing method is a critical technique that enables a self-sustaining system (SSS) during construction with no temporary support and minimizes onsite jobs. However, due to limited experimental evidence, traditional wet splicing methods are still dominantly adopted in the domestic precast industry. For PC beam-column connections, the current design code requires achieving emulative connection performances and corresponding structural integrity to be comparable with typical reinforced concrete (RC) systems with monolithic connections. To this end, this study conducted the standard material tests on mechanical splices to check their satisfactory performance as the Type 2 mechanical splice specified in the ACI 318 code. Two PC beam-column connection specimens with dry mechanical splices and an RC control specimen as the special moment frame were subsequently fabricated and tested under lateral reversed cyclic loadings. Test results showed that the seismic performances of all the PC specimens were fully comparable to the RC specimen in terms of strength, stiffness, energy dissipation, drift capacity, and failure mode, and their hysteresis responses showed a mitigated pinching effect compared to the control RC specimen. The seismic performances of the PC and RC specimens were evaluated quantitatively based on the ACI 374 report, and it appeared that all the test specimens fully satisfied the seismic performance criteria as a code-compliant special moment frame system.
        4,000원
        12.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        현장에 적용하는 콘크리트 강도가 증가함에 따라 초고성능 콘크리트의 적용 분야가 넓어지고 있다. 초고성능 콘크리 트에는 강섬유를 일반적으로 사용하고 있지만, 이를 대체하기 위해 다양한 섬유를 연구에 적용하고 있다. 대표적으로 슈퍼섬유 라고 알려진 아라미드 섬유가 있다. 본 연구에서는 초고성능 콘크리트의 특성이 구조물 보수보강 및 내진보강에 적용하기에 적 합하다고 판단하여, 슈퍼섬유 중 하나인 파라아리미드 섬유와 조합한 복합섬유를 혼입한 초고성능 콘크리트를 보-기둥 접합부에 내진보강재로 활용하여 특성을 분석하였다. 초고성능 콘크리트의 내진보강 효과를 확인하였으며 내진상세를 적용한 실험체와 유사한 거동을 확인하였다. 초고성능 콘크리트의 높은 강도로 인해 기존 콘크리트가 파괴되는 양상이 나타나 초고성능 콘크리 트의 보수보강 효과를 모두 발휘하지 못하고 있어 추가 연구를 통해 최적의 보강단면을 설정한다면 내진보강재료로 활용할 수 있을 것으로 판단된다.
        4,000원
        13.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated durian (Durio zibethinus) peels to produce powdered activated carbon (DPAC). The influence of process variables such as carbonization temperature, activation time, contact time, CO2 flow rate, and adsorption dosage was optimized using response surface methodology (RSM). A six-factor and two levels Box–Behnken design (BBD) was used to optimize the parameters. The independent variables were activation temperature (°C), duration (min), CO2 flow rate during the activation process (L/min), irradiation of adsorbent (kGy), irradiation duration (min), and adsorbent dosage (g) while phenol removal (mg/L) was the dependent variable (response). Following the observed correlation coefficient values, the design was fitted to a quadratic model (R2 = 0.9896). The optimal removal efficiency (97.25%) was observed at an activation temperature of 900 °C, activation time of 30 min, CO2 flow rate of 0.05 L/min, irradiation dose of 100 kGy, contact time of 35 min and adsorption dosage of 0.75 g. The optimal DPAC showed a BET surface of 281.33 m2/ g. The removal efficiency was later compared with a commercially available activated carbon which shows a 98.56% phenol removal. The results show that the durian peel could be an effective precursor for making activated carbon for phenol removal, and irradiation can significantly enhance surface activation.
        4,000원
        14.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Reinforcement learning (RL) is widely applied to various engineering fields. Especially, RL has shown successful performance for control problems, such as vehicles, robotics, and active structural control system. However, little research on application of RL to optimal structural design has conducted to date. In this study, the possibility of application of RL to structural design of reinforced concrete (RC) beam was investigated. The example of RC beam structural design problem introduced in previous study was used for comparative study. Deep q-network (DQN) is a famous RL algorithm presenting good performance in the discrete action space and thus it was used in this study. The action of DQN agent is required to represent design variables of RC beam. However, the number of design variables of RC beam is too many to represent by the action of conventional DQN. To solve this problem, multi-agent DQN was used in this study. For more effective reinforcement learning process, DDQN (Double Q-Learning) that is an advanced version of a conventional DQN was employed. The multi-agent of DDQN was trained for optimal structural design of RC beam to satisfy American Concrete Institute (318) without any hand-labeled dataset. Five agents of DDQN provides actions for beam with, beam depth, main rebar size, number of main rebar, and shear stirrup size, respectively. Five agents of DDQN were trained for 10,000 episodes and the performance of the multi-agent of DDQN was evaluated with 100 test design cases. This study shows that the multi-agent DDQN algorithm can provide successfully structural design results of RC beam.
        4,000원
        15.
        2023.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study presents a dry precast concrete (PC) beam-column connection, and its target seismic performance level is set to be emulative to the reinforced concrete (RC) intermediate moment resisting frame system specified in ACI 318 and ASCE 7. The key features include self-sustaining ability during construction with the dry mechanical splicing method, enabling emulative connection performances and better constructability. Test specimens with code-compliant seismic details were fabricated and tested under reversed cyclic loading, which included a PC beam-column connection specimen with dry connections and an RC control specimen. The test results showed that all the specimens failed in a similar failure mode due to plastic deformations in beam members, while the hysteretic response curve of the PC specimen showed comparable and emulative performances compared to the RC specimen. Seismic performance evaluation was quantitatively addressed, and on this basis, it confirmed that the presented system can fully satisfy all the required performance for the intermediate RC moment resisting frame.
        4,000원
        16.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Thin-film shape technology is recognized for its core technology to enhance the technology of LCD, PDP, semiconductor manufacturing processes, hard disks and optical disks, and is widely used to form coated thin films of products. In addition, resistance (electron beam filament) technology for heating is used to manufacture filament for ion implants used in semiconductor manufacturing processes. By establishing an electronic beam filament production system and developing seven specifications of electronic beam filament, it is contributing to improving trade dynamics and increasing exports to Japan through localized media of theoretical imports to domestic companies. In this study, CAE analysis was performed after setting electron beam filament specification and development objectives, facilities and fabrication for electron beam filament production, electron beam filament JIG & fixture design and fabrication followed by electron beam filament prototype. Then, the automation and complete inspection equipment of the previously developed electronic beam filament manufacturing facilities was developed and researched to mass-produce them, to analyze and modify prototypes, design and manufacture automation facilities, and finally, to design and manufacture the complete inspection equipment. In this paper, design and manufacture of electronic beam filament total inspection equipment for mass production were dealted with.
        4,000원
        17.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        이 논문은 정적 재하상태에 있는 무피복 강합성보와 내화피복을 적용한 강합성보를 대상으로 화재 시 내부 온도 및 수직처짐에 대 한 내화피복의 영향을 평가한 결과를 제시한다. 열응력해석을 위한 화재하중으로는 American Society for Testing and Materials E119 의 표준화재곡선을 사용했으며, 강재거더 표면에 부착하는 내화재료의 방화효과를 구현하기 위해 외기에서 강합성보로 전달되는 열 의 전달계수를 감소시켰다. 실규모 무피복 강합성보에 대한 구조화재실험에서 내부 온도분포와 수직처짐을 측정하였고 실험 결과와 의 비교를 통해 비선형 구조화재해석 결과의 타당성을 검증하였다. 내화피복이 적용된 강합성보의 구조화재해석 결과로부터 강재거 더 표면에 내화재를 적용할 경우 동일 화재 조건에서 무피복 강합성보에 비해 내부 온도와 수직처짐이 감소함을 알 수 있었다. 또한 열 전달계수의 변화에 따른 열응력 응답으로부터 화재 시 강합성보의 온도 및 구조거동에 대한 내화피복의 영향을 제시하였다.
        4,000원
        19.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A bending experiment was conducted to verify the structural performance of the U-flange truss hybrid bean using rebars or steel pipes to reinforce the upper compression zone. As a result of evaluating the bending strength of the truss hybrid beam according to the Structural Design Standard (KDS 14 2020: 2022) by introducing the lattice member as a tensile resistance element, the following conclusions were obtained. Considering the lattice element as a tensile resistance element, the nominal bending strength was increased by 38.57 to 47.90 kN.m. As a result of reviewing the experiment as to whether the flexural member has proper ductility, it was found that it is desirable to place appropriate rebars, steel quality plans, and lateral restraints on the upper and lower parts of the hybrid beam to have sufficient ductility ratio.
        4,000원
        20.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, we deal with the feasibility of structural topology optimization for beam designs using retrofits that optimally allocates the reinforcement to the web under the condition that designers set bolt regions for H-beams of different dimensions. Mean compliance or minimal strain energy is considered for the optimization. Volume fraction is given to the design space to assign appropriate steel material quantities. The purpose of this study is to evaluate optimal shapes of stiffeners with the maximum rigidity that improves the axial and shear performance of the H-beam and to satisfy a given safety design standard of H-beam and stiffeners in case arbitrary load effect and resistances. Finally, the effectiveness of stiffness-based topology optimization on stiffeners is verified with several practical applicable examples.
        4,000원
        1 2 3 4 5