In this study used Computational Fluid Dynamic analysis to examine NOx reduction in hydrogen combustion, analyzing six conditions with varying air/fuel ratios, temperatures, and concentrations. Results were compared between two combustor shapes and previous experimental data. Findings showed increased air/fuel ratios decreased flame temperature and increased post-combustion O2. NOx emissions peaked at high temperatures and low O2. Numerical results aligned with previous experimental trends, validating the approach. Combustor shape differences, reflecting variations in fuel and air pipes, significantly affected flow rates and combustion positions. This reduced NOx emissions up to a certain air/fuel ratio, but excessive increases diminished this effect. The study highlights the complex relationship between combustor design, operating conditions, and NOx emissions. Further research is needed to optimize NOx reduction by considering pipe numbers and combustion locations. Future studies should explore various combustor geometries, fine-tune air/fuel ratios, and investigate additional parameters influencing NOx formation and reduction in hydrogen combustion systems.
One of the harmful substances produced by livestock manure is ammonia (NH3), which is emitted at a high rate. Additionally, NH3 reacts with sulfur oxides (SOx) and nitrogen oxides (NOx) in the atmosphere to produce fine particulate matter (PM2.5). However, the management and countermeasures for NH3 in livestock facilities were found to be inadequate. To establish effective measures, an NH3 emission factor that complies with certified methodologies is required. This study calculates the emission factor by monitoring NH3 concentration and ventilation between September 2022 and May 2023 in a mechanically-ventilated enclosed facility. The data measurement was performed in accordance with the VERA test protocol from Europe, and NH3 concentrations were monitored in real-time using photoacoustic spectroscopy measurement equipment. The average NH3 concentrations for Rooms 1, 2, and 3 during the entire period were measured at 0.96 ± 0.39 ppm, 1.20 ± 0.57 ppm, and 1.34 ± 0.71 ppm, respectively, with an overall average of approximately 1.17 ± 0.49 ppm. The average ventilation was recorded at 2,782.0 ± 1,510.4 m³/h, with an average internal temperature of 26.0 ± 1.5 °C and a relative humidity of 63.9 ± 5.2%. The average emission factor per room was calculated as 0.14 ± 0.03 g/day/pig for Room 1, 0.19 ± 0.07 g/day/pig for Room 2, and 0.15 ± 0.05 g/day/pig for Room 3. Ultimately, this study determined the average NH3 emission factor for the weaned pig facility to be 0.16 g/day/ pig.
Biodiesel is a traditional energy field that can replace low-quality marine fuels for ships and various studies have been conducted. Since the 2000s, Korea has introduced a mandatory supply system of biodiesel for domestic vehicle diesel, gradually raising the blending ratio from 0.5% to 3.5%, and is expected to raise the mandatory blending ratio to about 8.0% by 2030. Therefore, in this study attempted to blend high-quality samples that meet the biodiesel quality standards manufactured by domestic companies with MGO in ratios ranging from 0 to 60%. We utilized a 1-ton combustion chamber to compare and analyze the exhaust gas emissions characteristics. As a result, in the BD60 condition, which represents the maximum range in this study, the O2 increased by approximately 1.5%p, and CO2 tended to decrease by 1.1%p. NOx decreased by approximately 18.2%p from 34.1 ppm to 27.9 ppm. In the case of SOx, a very low concentration of 0.08 ppm was detected under the BD0 condition, and it was undetectable under all other conditions containing biodiesel. This suggests that MGO itself has excellent low-sulfur oil quality and can implement zero SOx through biodiesel mixing. Furthermore the combustion efficiency decreased by approximately 1.91%, from 72% to 70.2%, and the exhaust gas temperature also decreased by about 4.5%p. However despite the lower calorific value of biodiesel compared to MGO, it demonstrated relatively close thermal output per unit content. This indicates sufficient potential for biodiesel to serve as a viable alternative fuel for ships in the future.
The odors emitted from wastewater treatment plants are not only a health and hygiene problem, but can also lead to complaints from residents and have wider social ramifications such as bringing about falling property values in the surrounding area. In this paper, based on the data measured at domestic and overseas wastewater treatment facilities, the concentrations of complex odors and odorous compounds were compared for each treatment/process: primary treatment, secondary treatment, and sludge treatment processes. Odor compounds that contribute greatly to complex odors were summarized for each process. In addition, the characteristics of odor wheels for each wastewater treatment process, which provide both chemical and olfactory information regarding odors, were reviewed. For domestic wastewater treatment facilities, the complex odor concentrations (unit, dilution factor) of the primary and secondary treatment processes were 4.5-100,000 (median, 32.1) and 2.5-30,000 (median, 10.7), respectively. However, the complex odor concentrations in the sludge treatment process were 3.0-100,000 (median, 118.7), which was more than three times higher than that in the wastewater treatment process. In the wastewater treatment process, those odor compounds making the greatest contributions to complex odors were sulfur-containing compounds such as hydrogen sulfide, dimethyl sulfide, and dimethyl disulfide DMS. In order to properly manage odors from wastewater treatment plants and minimize their impact, it is important to understand the status of odor emissions. Therefore, the compositions and concentrations of odors from wastewater treatment processes and odor wheel information, which are reviewed in this paper, are used to evaluate the potential risk of odor from wastewater treatment facilities in order to derive strategies to minimize odor emissions. Moreover, the information can be usefully used to introduce the best available technology to reduce odors emitted from wastewater treatment facilities.
The present study estimated rumen fermentation characteristics and greenhouse gas emissions of different forages. Alfalfa, timothy, tall fescue, Italian ryegrass, and rice straw as the main forage sources for Hanwoo were used in the present study. Crude protein was highest in alfalfa but lowest in rice straw (p<0.05). Ether extract was higher in alfalfa and Italian ryegrass than in the other forages (p<0.05). Crude ash was highest in rice straw but lowest in tall fescue (p<0.05). Neutral detergent fiber was highest in tall fescue but lowest in alfalfa (p<0.05). Acid detergent fiber was highest in Italian ryegrass and rice straw but lowest in alfalfa (p<0.05). In vitro digestibilities of dry matter (DMD) and neutral detergent fiber (NDFD) were highest in timothy but lowest in rice straw (p<0.05). Rumen pH was highest (p<0.05) in alfalfa, while ammonia-N was higher (p<0.05) in alfalfa and Italian ryegrass than in the other forages. Total volatile fatty acid was highest (p<0.05) in timothy, while acetate and propionate were highest (p<0.05) in alfalfa and rice straw, respectively. Acetate to propionate ratio was higher (p<0.05) in alfalfa, timothy, and Italian ryegrass than in rice straw. Rice straw had lowest total gas (mL) (p<0.05) but highest its per DMD and NDFD. Rice straw had higher (p<0.05) CO2 (per DMD and NDFD) compared to alfalfa (per DMD and NDFD), timothy (per DMD and NDFD), tall fescue (per NDFD), and Italian ryegrass (per DMD). Again, rice straw had higher (p<0.05) CH4 (per DMD and NDFD) compared to timothy (per DMD and NDFD) and tall fescue (per NDFD). Therefore, this study indicates that timothy has a higher nutrient digestibility and volatile fatty acid in the rumen leading to a reduction of greenhouse gas emission.
In this study, when Butyl ether, a type of diether-based oxygenated fuel, is mixed in each volume ratio in a naturally aspirated direct injection diesel engine, the exhaust gas emission characteristics of the oxygenated component in the fuel affect each operating area of the engine I wanted to investigate the effect on. For comparative measurement of engine performance and exhaust emissions, commercial diesel and butyl ether mixed fuels were classified into 4 types according to the mixing ratio and tested. As the content of butyl ether in fuel increases, soot emission reduction increases, and when the maximum mixing amount of butyl ether (diesel 80vol-% + BE 20vol%) is applied, compared to the case of using only diesel as fuel, at 2500 rpm and no load, 39%, and about 32% of smoke reduction effect at full load was confirmed.
The acoustic emission (AE) method as a passive non-destructive monitoring technique is proposed for real-time monitoring of mechanical degradation in underground structures, such as deep geological disposal of high-level nuclear waste (HLW). This study investigates the low-frequency characteristics of AE signals emitted during the fracturing of meter-scale concrete specimens; uniaxial compression tests (UCT) in a lab scale and Goodman jack (GJ) tests in a 1.3 m-long concrete block were conducted while acquiring the AE signals using low-frequency AE sensors. The results indicate a sharp increase in AE energy emission at approximately 60% and 80% of the yield stresses in the UCT and GJ tests, respectively. The collected AE signals were primarily found in two frequency bands: the 4-28 kHz range and the 56-80 kHz range. High-frequency AE signals were captured more as the stress increased in the GJ tests, which was in contrast to the UCT tests. Furthermore, the AE signals obtained from the Goodman jack tests tended to lower RA values than the UCT results. This study presents unique experimental data with low-frequency AE sensors under different loading conditions, which provides insights into field-scale AE monitoring practices.
In this review paper, the sources of odor, major odor compounds, and emission characteristics from livestock farms are summarized. The main sources of odor on livestock farms are barn facilities, manure storage facilities, manure composting facilities, and wastewater treatment facilities. High concentrations of odor are emitted during the manure removal process, and livestock odor tends to be the most severe in summer. There was a remarkable difference in odor intensity depending on the farm size and the cleaning condition, and odor intensity varied greatly depending on the weather parameters such as wind direction and speed. The concentrations of ammonia and hydrogen sulfide were high among the odor compounds emitted from livestock farms, and these compounds also contributed to odor intensity. The odor intensity in poultry and swine farms was higher than in cattle farms. Information on livestock odor emission is very useful for managing livestock odor complaints and designing odor abatement technologies.
This study was carried out in order to provide suggestions with regard to optimal control methods for various odor emission facilities (162 companies and 26 industrial classifications) through comparative analysis of effective odor treatment technologies for each type of odor substance by literature reviews, based on measured 22 odor substance data for 162 samples taken from A city. The industrial classification of Pulp showed the highest odor quotient (7,589 as average value) and was followed by the industrial classifications of Wastewater, Woods, and Furniture, indicating average odor quotient values of 2,361, 1,396 and 1,392, respectively. Absorption using chlorine dioxide and sodium hydroxide can be an optimal treatment method to remove the odor substances of sulfide and aldehyde groups. Biofilers with microbial communities will be effective to remove odors caused by volatile organic compounds (VOCs) and an absorption method using sulfuric acid is proper for the removal of odor substances caused by nitrogens.
The characteristics of pollutant emission for non-premixed flames with LCG 8000 and LCG 6000 represented as low calorific gases were investigated by numerical simulation. Commercial software (ANSYS 16.2 - FLUENT) is used to predict 2-D pollutant emission with GRI 3.0 detailed reaction mechanism. In addition, the addition of hydrogen to LCG 6000 was also considered. As result, the flame length and temperature of LHVGs were decreased with decreasing calorific value at the same condition. In addition, NO concentration was decreased as temperature decreased. However, CO concentration for LCG 8000 predicted to be slightly higher than that for methane due to the high propane concentration. In the case of LCG 6000 with added hydrogen, the flame length was the shortest and NO concentration was the highest due to the highest flame temperature, but CO concentration decreased rapidly due to the addition of the carbon-free fuel.
Public complaints arising from centralized animal manure treatment plants are increasing due to the odors produced during animal manure treatment. Various physico chemical and biological methods are used to mitigate such odors. Still, many problems exist, such as a lack of fundamental data on odor generation characteristics and design standards for odor mitigation facilities. Therefore, this study evaluated the characteristics of NH3 and H2S gas produced from a centralized animal manure treatment plant. The centralized animal manure treatment plant selected in this study has a treatment capacity of 150 tons (animal manure and food waste) per day. The composting matrix was mechanically turned from 9:00 am to 6:00 pm on weekdays and not turned all day on weekends. The NH3 concentrations measured during the day on weekdays (96.4 ± 7.8 ppmv) were about 14% higher than on weekends (84.9 ± 15.9 ppmv). During the week, the ammonia concentration during the day was about 15% higher than at night, but there was no difference between day and night on weekends. The hydrogen sulfide concentration during the day (4,729 ± 3,687 ppbv) on a weekday was about 4.7 times higher than at night (1,007 ± 466 ppbv). The results of this study provide valuable information that is necessary for the operation of odor mitigation facilities. It is expected that the results will contribute to establishing an operational strategy that can reduce the energy required to collect exhaust gas.
The underground environment has an advantage to minimize the external influences because it is isolated space with surrounded rock medium. Therefore, underground rock has been used recently as the target for a disposal system of spent fuel with high-level radioactive. The disposal system mainly consists of natural barrier (i.e., surrounded rock medium) and engineered barrier (i.e., concrete lining, plug, backfill, canister, and buffer). In particular, the engineered barrier is important for long-term storage because it has to preferentially block the leakage of radioactive nuclide. Non-destructive technologies (NDT) have been utilized to monitor the state of disposal system for considering the limitation in deep depth conditions such as limited environment for direct damage inspection. Acoustic emission (AE) monitoring technique is an effective method to monitor the damage (crack) magnitude, history (i.e., crack evolution), and location using high-frequency elastic waves. To apply the AE monitoring method in the disposal system, the characteristics of damaged materials should be considered. The concrete lining has multi-failure behavior (i.e., brittle and ductile) resulted from composition as cement and reinforcing steel bar. Therefore, it important to investigate the AE characteristics according to the failure level of reinforced concrete for damage monitoring of the disposal systems. In this study, the four-point bending tests were carried out to measure the AE signals from the cracking of reinforce concrete specimens in laboratory. The test specimens were prepared with different strength. After the experiment, the AE characteristics were analyzed using the AE parameters with loading and failure state in the curve of time-stress. This study will be helpful for damage monitoring using AE technique in the field of high-level radioactive disposal system.
Diesel engine has the advantages of strong power, low fuel consumption and good durability, so it has been widely used in transportation, automobile, ship and other fields. However, the nitrogen oxides(NOx) and particulate matter(PM) emitted by diesel engines have become one of the main causes of air pollution. Especially during idling, the engine temperature is low, and there are more residual exhaust gases in the combustion chamber, resulting in the formation of more harmful emissions. In this study, performance of a single cylinder, four-stroke, direct injection (DI) diesel engine fueled with diesel–biodiesel mixtures has been experimentally investigated. The findings show that a remarkable improvement in PM–NOx trade-off can be achieved by burning diesel-bioethanol blend fuels.
Diesel engine has the advantages of strong power, low fuel consumption and good durability, so it has been widely used in transportation, automobile, ship and other fields. However, the nitrogen oxides(NOx) and particulate matter(PM) emitted by diesel engines have become one of the main causes of air pollution. Especially during idling, the engine temperature is low, and there are more residual exhaust gases in the combustion chamber, resulting in the formation of more harmful emissions. In this study, performance of a single cylinder, four-stroke, direct injection (DI) diesel engine fueled with diesel–biodiesel mixtures has been experimentally investigated.
본 연구는 주요 난대 상록활엽수종인 붉가시나무, 구실잣밤나무, 동백나무, 황칠나무 등 4종 임분과 곰솔림을 대상으 로 2019년 5월~2020년 1월까지 각 산림의 임분 특성 및 NVOCs 발산특성을 알아보고자 수행되었다. 분석 결과, 각 조사구의 계절별 기온 및 습도는 여름철에 고온다습하고 겨울철 저온건조한 일반적 우리나라의 기후적 특성을 보였고 기압은 대체적으로 겨울이 높았으며 봄, 여름보다 가을과 겨울의 기압이 높았다. 조사구 5개소의 총 NVOCs는 전체적으로 여름철에 가장 높았으며 봄, 겨울은 황칠나무림, 가을은 구실잣밤나무림, 여름은 붉가시나무림의 NVOCs량 이 상대적으로 높은 특성을 보였다. 수종별로 살펴보면, 침엽수종인 곰솔림보다 난대 상록활엽수종인 붉가시나무, 구실잣밤나무, 동백나무, 황칠나무의 NVOCs 발산량이 낮지 않거나 오히려 높은 것을 확인하였다. NVOCs 발산에 기온(r=0.590, P=0.000), 습도(r=0.655, P=0.000)는 양(+)의 상관관계, 기압(r=-0.384, P=0.000)과 풍속(r=-0.263, P=0.018)은 낮은 음(-)의 영향이 있었다. 미기상인자 중 습도(β=0.507, P=0.000)가 NVOC 발산량에 가장 크게 영향을 미치는 것으로 나타났으며 기온, 기압, 풍속 순으로 영향을 미치는 것으로 분석되었다.