검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 234

        41.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, lanthanum oxide (La2O3) dispersed molybdenum (Mo–La2O3) alloys are fabricated using lanthanum nitrate solution and nanosized Mo particles produced by hydrogen reduction of molybdenum oxide. The effect of La2O3 dispersion in a Mo matrix on the fracture toughness at room temperature is demonstrated through the formation behavior of La2O3 from the precursor and three-point bending test using a single-edge notched bend specimen. The relative density of the Mo–0.3La2O3 specimen sintered by pressureless sintering is approximately 99%, and La2O3 with a size of hundreds of nanometers is uniformly distributed in the Mo matrix. It is also confirmed that the fracture toughness is 19.46 MPa·m1/2, an improvement of approximately 40% over the fracture toughness of 13.50 MPa·m1/2 on a pure-Mo specimen without La2O3, and this difference in the fracture toughness occurs because of the changes in fracture mode of the Mo matrix caused by the dispersion of La2O3.
        4,000원
        46.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A bond-based peridynamic model has been reported dynamic fracture characteristic of brittle materials through a simple constitutive model. In the model, each bond is assumed to be a simple spring operating independently. As a result, this simple bond interaction modeling restricts the material behavior having a fixed Poisson’s ratio of 1/4 and not being capable of expressing shear deformation. We consider a state-based peridynamics as a generalized peridynamic model. Constitutive models in the state-based peridynamics are corresponding to those in continuum theory. In state-based peridynamics, thus, the response of a material particle depends collectively on deformation of all bonds connected to other particles. So, a state-based peridynamic theory can represent the volume and shear changes of the material. In this paper, the perfect plasticity is considered to express plastic deformation of material by the state-based peridynamic constitutive model with perfect plastic flow rule. The elastic-plastic behavior of the material is verified through the stress-strain curves of the flat plate example. Furthermore, we simulate the high-speed impact on 3D granite model with a nonlocal contact modeling. It is observed that the damage patterns obtained by peridynamics are similar to experimental observations.
        4,000원
        47.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The 3-way valve have been used as a valve for opening and closing the valve by the flow control in the pressure system of the cryogenic and high pressure environment. In this paper, numerical analysis and experimental study on fracture nipple of 3-way ultra high pressure valve applied to space launch vehicle was carried out. We have developed a 3-way valve numerical simulation modeler of cryogenic environment using commercial software ANSYS 18.2. As results of numerical analysis, optimum nipple condition was derived. In addition, a 3-way valve prototype was fabricated and the fracture test was performed and compared with the numerical analysis results.
        4,000원
        48.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 다중적층 유리의 고속 충돌체에 의한 충돌/침투 파괴 현상을 해석하기 위해 페리다이나믹 동적 해석 기법을 적용한다. 대부분의 다중적층 유리 구조물들은 다수의 주요 유리층들이 상대적으로 매우 얇은 탄성 필름으로 접착되어서 만들어진다. 따라서 다중적층 구조물의 수치해석 모델을 구성하는 것은 까다롭고 비용이 많이 든다. 본 연구에서는 실제 절점을 대신하여 가상의 절점들을 주요층들 사이에 위치시키고 상호작용시키는 비국부 가상 층간구조 모델링을 도입하여 보다 효율적으로 다중적층 구조를 모델링하였다. 또한 고속 충돌체와의 충돌 및 침투 현상을 해석하기 위해 페리다이나믹 비국부 접촉 모델이 고려되었다. 7개의 유리층과 하나의 탄성 백킹층이 폴리비닐부티랄 필름으로 부착된 다중적층 유리의 충돌 파괴 해석을 통해 제안된 해석 모델의 손상 파괴 적용 가능성을 확인하였다
        4,000원
        52.
        2018.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, Equivalent fracture strain and Fracture energy were evaluated with the small punch test(SP test) for friction stir welded(FSW) Al6061-T6 sheets. With the three rotation speeds and the three feeding rate, The nine different conditions of FSW were prepared for the SP test. The SP test specimens were manufactured and tested on the advancing side, center, and retreating side to the tool rotation direction. From the SP test data, the equivalent fracture strain and the fracture energy were analyzed. The high value of equivalent fracture strain was attained form tool rotational speed 900RPM and feeding rate 330mm/min. It is found that its characteristic is about 14% higher than the value of condition 1100RPM-330mm/min that have the lowest value. The high value of fracture energy was obtained from the tool rotation speed 900RPM and feeding rate 330mm/min. The lowest fracture energy, which from 1000RPM-300mm/min, was approximately 16% difference to the highest value.
        4,000원
        53.
        2018.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Complicated crown-root fractures are considered rare occurrences in young permanent dentition; however, they often present complicated and unpredictable treatment options. The most common treatment option for crown-root fractured teeth is reattachment of fractured segment, but if it is thought impossible to maintain, it should be extracted. However, when unfavorable crown-root fracture occurs in the adolescents, extraction of fractured teeth is expected to be poor due to excessive resorption of alveolar and prosthetic replacement cannot be performed immediately, various treatment options should be considered. This report suggests root submergence in the complex crown-root fracture in growing patients is performed and the functional and aesthetic results including preservation of the alveolar bone are obtained.
        4,000원
        54.
        2018.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper is to investigate the micro-behavior of the double-span beams with WUF-W seismic connection under combined axial tension and moment and to propose the rational rotational capacity of it for progressive collapse-resistant analysis and design addressing the stress and strain transfer mechanism. To this end, the behavior of the double-span beams under the column missing event is first investigated using the advanced nonlinear finite element analysis. The characteristics of fracture indices of double-span beams with WUF-W connection under combined axial tension and flexural moment are addressed and then proposed the rational rotational capacity as the basic datum for the progressive collapse-resistant design and analysis. The distribution of fracture indices related to stress and strain for the double-span beams is investigated based on a material and geometric nonlinear finite element analysis. Furthermore, the micro-behavior for earthquake and progressive collapse is explicitly different.
        4,000원
        57.
        2018.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Three kinds of STS304-Zr alloys were fabricated by varying the Zr content, and their microstructure and fracture properties were analyzed. Moreover, we performed heat treatment to improve their properties and studied their microstructure and fracture properties. The microstructure of the STS304-Zr alloys before and after the heat treatment process consisted of α-Fe and intermetallics: Zr(Cr, Ni, Fe)2 and Zr6Fe23. The volume fraction of the intermetallics increased with an increasing Zr content. The 11Zr specimen exhibited the lowest hardness and fine dimples and cleavage facets in a fractured surface. The 15Zr specimen had high hardness and fine cleavage facets. The 19Zr specimen had the highest hardness and large cleavage facets. After the heat treatment process, the intermetallics were spheroidized and their volume fraction increased. In addition, the specimens after the heat treatment process, the Laves phase (Zr(Cr, Ni, Fe) 2) decreased, the Zr6Fe23 phase increased and the Ni concentration in the intermetallics decreased. The hardness of all the specimens after the heat treatment process decreased because of the dislocations and residual stresses in α-Fe, and the fine lamellar shaped eutectic microstructures changed into large α-Fe and spheroidized intermetallics. The cleavage facet size increased because of the decomposition of the fine lamellarshaped eutectic microstructures and the increase in spheroidized intermetallics.
        4,000원
        58.
        2018.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : A geo-grid pavement, e.g., a stress-absorbing membrane interlayer (SAMI), can be applied to an asphalt-overlay method on the existing surface-pavement layer for pavement maintenance related to reflection cracking. Reflection cracking can occur when a crack in the existing surface layer influences the overlay pavement. It can reduce the pavement life cycle and adversely affect traffic safety. Moreover, a failed overlay can reduce the economic value. In this regard, the objective of this study is to evaluate the bonding properties between the rigid pavement and a SAMI by using the direct shear test and the pull-off test. The predicted fractural energy functions with the shear stress were determined from a numerical analysis of the moving average method and the polynomial regression method. METHODS : In this research, the shear and pull-off tests were performed to evaluate the properties of mixtures constructed using no interlayer, a tack-coat, and SAMI with fabric and without fabric. The lower mixture parts (describing the existing pavement) were mixed using the 25-40-8 joint cement-concrete standard. The overlay layer was constructed especially using polymer-modified stone mastic asphalt (SMA) pavement. It was composed of an SMA aggregate gradation and applied as the modified agent. The sixth polynomial regression equation and the general moving average method were utilized to estimate the interlayer shear strength. These numerical analysis methods were also used to determine the predictive models for estimating the fracture energy. RESULTS: From the direct shear test and the pull-off test results, the mixture bonded using the tack-coat (applied as the interlayer between the overlay layer and the jointed cement concrete) had the strongest shear resistance and bonding strength. In contrast, the SAMI pavement without fiber has a strong need for fractural energy at failure. CONCLUSIONS : The effects of site-reflection cracking can be determined using the same tests on cored specimens. Further, an empiricalmechanical pavement-design analysis using the finite-element method (FEM) must be done to understand the appropriate SAMI application. In this regard, the FEM application analysis and bonding property tests using cored specimens from public roads will be conducted in further research.
        4,000원
        59.
        2017.10 구독 인증기관·개인회원 무료
        표층용 아스팔트 혼합물은 공극률 4%로 다져졌을 때 가장 우수한 공용성을 발휘하는 것으로 알려져 있어 밀입도 아스팔트 혼합물은 배합설계시 4%의 공극률이 얻어지는 아스팔트 함량을 최적아스팔트 함량(optimum asphalt content: OAC)으로 결정한다. 그리고 현장에서는 이 밀도의 96% 이상의 다짐도가 얻어지도록 공극률 6∼7%로 다짐한다. 하지만 이 경우 아스팔트 포장으로의 수분 침투방지를 보장할 수 없어 교량포장의 경우 상판에 방수 처리를 하도록 요구하고 있다. 따라서 아스팔트 포장의 공극률을 0%에 가깝도록 다짐하면서도 공용성을 잘 유지할 수 있다면 방수 처리공정을 생략할 수 있고 포장의 수명도 보장 할 수 있어 일거양득일 것이다. 이에 공극률이 0에 가까우면서도 아스팔트 포장으로서의 특성을 유지할 수 있도록 하기 위해서는 바인더특성을 강화하고 그에 맞도록 골재 입도를 조정하는 것이 필요하다. 본 연구에서는 이렇게 공극률이 0에 가깝도록 개발된 무공극 아스팔트 콘크리트의 중요특성 중 하나인 휨 모드에서의 저온특성으로 유사파괴인성(pseudo fracture toughness: PFT)을 구하여 비교평가 하였다. 이를 위해 보 공시체를 제조하고 영하의 저온에서 3점 휨 시험을 통해 얻어진 하중-처짐 곡선에서 PFT를 구하고 이를 일반 13mm 밀입도 아스팔트(dense-graded asphalt: DGA) 혼합물을 비롯한 개질 SMA 혼합물 등과 비교하였다. 그 결과 무공극 아스팔트 혼합물의 유사파괴인성이 DGA의 4배 이상이 되는 등 가장 우수한 것을 확인 하였다. 이는 고성능의 바인더(PG 82-34)와 그에 맞는 입도조정 때문에 저온 하에서 가장 우수한 파괴인성을 보인 것으로 추정된다. 따라서 큰 균열저항성이 요구되며 방수가 필요한 교면포장 등에 사용할 경우 우수한 성능을 발휘 할 수 있을 것으로 판단된다.
        1 2 3 4 5