본 연구는 국내산 가시오가피의 건강기능식품 소재로서 의 가능성을 확인하기 위해 산지별 채취한 가시오가피의 유효물질 함량 및 면역 증강 효과을 평가하였다. 태백, 철 원, 삼척, 강원도 농업기술원에서 수확한 가시오가피의 지 표성분인 eleutheroside B 및 eleutheroside E의 분석을 수 행하였으며, 면역 증강에 대한 효과를 관찰하기 위하여 MTT 세포독성 평가, NO 생성량과 cytokine 생성량을 측 정하였다. 지표성분 eleutheroside B의 함량은 채취 지역별 로 70% 에탄올 추출물에서는 2.96±0.11-6.24±0.05 mg/g로 태백에서 가장 높은 함량을 나타냈으며, 열수 추출물에서 는 1.11±0.05-2.11±0.03 mg/g로 태백에서 가장 높은 함량 을 나타냈다. Eleutheroside E 함량은 채취 지역별로 70% 에탄올 추출물에서는 4.93±0.20-10.79±0.03 mg/g을 나타냈으 며 철원에서 가장 높은 함량을 나타냈고, 열수 추출물에서 는 1.75±0.14-3.64±0.05 mg/g로 철원과 농업기술원에서 가장 높은 함량을 나타냈다. 또한, eleutheroside B 및 E 함량은 열수 추출물보다 70% 에탄올 추출물에서 더 높은 함량을 나타냈다. 채취 지역별 가시오가피의 70% 에탄올 추출물은 50-200 μg/mL 농도에서, 열수 추출물은 100-500 μg/mL 농도 에서 RAW 264.7 대식세포에 대한 세포독성을 나타내지 않 았으며, 대식세포의 활성화로 방출되는 NO 성성량을 측정 한 결과, 가시오가피 줄기 추출물에서 NO 생성량이 증가하 는 것을 확인하였으며, TNF-α, IL-6, IL-1β을 포함하는 cytokine의 방출을 측정한 결과 유의적인 증가를 나타냈다. 따라서 가시오가피 줄기는 면역 관련 질환의 개선을 위한 건강기능식품 소재로 활용 가능할 것으로 사료된다.
To produce an intestinal immunomodulatory beverage containing Centella asiatica extract (CAE), three types of CAE-added beverage prototypes were prepared, and their immunomodulatory activities and marker compounds were analyzed. As a result of the cytotoxicity assessment, all the beverages did not show significant toxicity compared to the control group. Next, the immunomodulatory activities of the beverage prototype were evaluated using the inflammatory model of IL-1β-induced intestinal epithelial cell line. All the samples significantly reduced the production of IL-6, IL-8, and MCP-1 in a CAE concentration-dependent manner. In addition, CAE-added beverages inhibited NO, IL-6, and IL-12 production in LPS-induced RAW 264.7 cells. When the major triterpenoids, as marker compounds for the production of CAE-added beverages, were analyzed by HPLC-DAD, only asiaticoside was detected beyond the limit of quantification, while madecassoside, madecassic acid, and asiatic acid were not detected. The amounts of asiaticoside in CAE-added beverage prototypes were confirmed in No. 1 (19.39 μg/mL), 2 (19.25 μg/mL), and 3 (19.98 μg/mL). In conclusion, the results of this study suggested that CAE-added beverage prototypes induced immunomodulatory effects in the intestinal inflammatory cell line models and asiaticoside could be used as a marker compound for CAE-added beverage production.
Laminaria japonica is a type of brown algae widely consumed in Asian countries and contains many essential nutrients and exhibits anti-obesity, antioxidant, and anti-inflammatory effects. In this study, the antioxidant and immunomodulatory effects of a Laminaria japonica water extract (LJE) were investigated using an in vitro model. Mean total polyphenol content of LJE was 2.16±0.11 μg GAE/mg, and LJE dose-dependently inhibited ABTS radical activity but did not scavenge DPPH radicals. In addition, LJE enhanced nitric oxide (NO) production and upregulated the mRNA expressions of proinflammatory cytokines (i.e., tumor necrosis factor-α and interleukin-6) in RAW 264.7 cells. On the other hand, LJE inhibited NO production and downregulated proinflammatory cytokine mRNA levels in endotoxin-stimulated RAW 264.7 cells. Thus, our data show that LJE has moderate antioxidant activity and biphasic immunomodulatory effects on RAW 264.7 cells. In summary, the study indicates that LJE has potential therapeutic use as a novel biphasic immuno-modulator.
Biosilica is a material extracted from the shell (cell wall) of Melosira nummuloides, a type of sea diatom, and is one of the widely distributed biominerals. Recently, some studies have revealed that biosilica has a characteristic bio-modulatory activity compared to synthetic silica. However, there has been little research on the effects and action mechanisms of biosilica in immune cells. In this study, we investigated the effect of biosilica water on mouse dendritic cells (DCs), the most potent antigen-presenting cells in immunity, and whether it may alter the function of DCs. Biosilica water decreased the metabolic activity of DCs at 20% concentration (v/v) and the production of IL-1 beta in a concentration-dependent manner. And also, more cells with fragmented nuclei were observed in the DCs treated with 20% biosilica water compared to other treatment groups. The mixed leukocyte response experiment showed the biosilica water-treated DCs significantly modulated the metabolic activity and proliferation of allogeneic spleen cells compared to control DCs. This result suggests that biosilica water may modulate the antigen-presenting capability of DCs. Taken together, this study shows the immunomodulatory activity of biosilica on DCs and may affect immune responses. Further research is needed to investigate the immunological activity of biosilica water.
Musculoskeletal disorders including fracture, tendonitis, osteoarthritis, and laminitis are common diseases in racehorses that can cause large economic losses in the racehorse industry. Mesenchymal stem cells (MSCs) are being applied as new clinical tools for treatment of musculoskeletal disorders of racehorses. To investigate the immunomodulatory effects of stem cell therapy, we analyzed the anti- and pro-inflammatory factors in peripheral blood mononuclear cells of racehorses before and after stem cell application using quantitative real-time RT-PCR. The expression levels of pro-inflammatory factors (CCL5, IFN-γ, IL-2, and IL-18) were decreased while those of anti-inflammatory factors (TIMP-1, IL-10, TGF-β1, and VEGF) were increased significantly after application of equine adipose tissue-derived MSCs (eAD-MSCs) to racehorses with fracture. Moreover, the expression levels of pro-inflammatory factors (IL-2, IL-18, and TNF-α) were decreased while those of anti-inflammatory factors (TIMP-1, TIMP-2, IL-10, TGF-β1, and VEGF) increased significantly after stem cell application of eAD-MSCs in racehorses with tendonitis. After evaluating immunomodulatory effects of stem cell therapy on equine musculoskeletal disorders such as fracture and tendonitis, our results showed that expression levels of pro-inflammatory factors were decreased, while those of anti-inflammatory factors increased significantly after stem cell application of eAD-MSCs. These findings suggest that the healing effects of the stem cell therapy might be due to its modulation of inflammatory factors.
For the purpose of developing new immunomodulatory agents from broccoli, ethanol extract (BCEE), hot water extract (BCHW), and crude polysaccharide (BCCP) were isolated from broccoli, and their immunomodulatory activities and chemical properties were examined. In the in vitro cytotoxicity analysis, BCHW and BCCP did not affect the growth of tumor cells and normal cells. Murine peritoneal macrophages stimulated with BCCP showed higher production of IL-6, IL-12, and TNF- α cytokines than those stimulated with BCHW. Also, BCHW and BCCP did not show proliferation of splenic lymphocytes. In the in vitro assay for intestinal immunomodulatory activities, only BCCP enhanced GM-CSF secretion and the bone marrow cell-proliferating activity via cells in Peyer’s patches at 1,000 μg/mL. Also, BCHW mainly contained 33.7% neutral sugars, such as arabinose, glucose, and galactose, and 30.7% uronic acid, and BCCP consisted of 42.6% neutral sugars, including arabinose, galactose, and glucose, and 50.5% uronic acid. The above results lead us to conclude that crude polysaccharide (BCCP) isolated from broccoli causes considerably high cytokine production in peritoneal macrophages and bone marrow cell proliferation, and the polysaccharide extraction process is indispensable for separation of new immunomodulatory agents from broccoli.
Lentinus tigrinus (L. tigrinus), a white-rot fungus that grows naturally on rotten hardwood during spring and summer in China, is an edible and medicinal mushroom containing a valuable combination of nutrients including high amino acid concentrations and low sugar levels. However, no reports have isolated and characterized FIP genes from L. tigrinus to date. In our study, two novel fungal immunomodulatory proteins (FIPs) from Lentinus tigrinus were identified and named Fip-lti1 and Fip-lti2. The bioactive characteristics of Fip-lti1 and Fip-lti2 were compared to a well-known FIP (LZ-8 from Ganoderma lucidum) to investigate the effect of Fip-lti1 and Fip-lti2 expression on Concanavalin A (ConA)-induced liver injury. Both Fip-lti1 and Fip-lti2 protected livers from ConA-induced necrosis, as evidenced by decreased serum aminotransferase levels (AST, ALT) and relieved liver histology. Levels of proinflammatory cytokines (TNF-α, IL-1β, and IL-6) and oxidative stress (SOD, MDA) were shown to be reduced by expressing Fip-lti1 and Fip-lti2. In addition, the hepatoprotective effect of Fip-lti1, Fip-lti2, and LZ-8 correlated with ameliorating the imbalance of Th1/Th2 (IFN-γ/IL-4). The observed liver protection of Fip-lti1 and Fip-lti2 was mechanistically explored. Treatments with Fip-lti1 and Fip-lti2 regulated GATA3/T-bet expression, activated the decreased Nrf-2/HO-1 pathway, and countered the upregulated NLRP3/ASC/NF-κBp65 signaling in ConA-stimulated liver injury. In conclusion, we identified two fungal proteins (Fip-lti1 and Fip-lti2) that can protect liver from ConA-induced liver injury.
The objective of this study is to assess immunomodulatory effects of mixed Weissella (W.) cibaria JW15 strain with water extract of black soybean (Glycine max) and burdock (Arctium lappa) on Listeria (L.) monocytogenes infection in mice. Female 7-9 week old BALB/c mice were given a daily dose of 1 × 109 CFU of viable JW15 and JW15 mixed with black soybean (BS) and burdock (BD) in 200 μL PBS for 2 weeks. The nomal control group (NC) and positive control group (PC) were given 200 μL PBS. After 2 weeks, mice were infected with L. monocytogenes (1.0 × 105 CFU/mouse) via the tail vein. The NC was injected with 100 μL PBS without L. monocytogenes. After 2 days, mice were euthanized and their body weights were determined. In addition, their livers and spleens were weighed, and serum were analyzed for cytokine (Interleukin-1β (IL-1β) and Tumor necrosis factor-α (TNF-α)) production. The survival rate was monitored using 5 mice in each group in the same way above until the mice died. Two days after infection with L. monocytogenes, mean spleen weight per body weight (g/kg) of JW15 (5.4 ± 0.88 g/kg), JW15 + BS (6.0 ± 0.64 g/kg), and JW15 + BD (5.3 ± 0.38 g/kg) group were significantly lower than that of the PC (6.8 ± 0.57 g/kg). The level of IL-1β in the serum of JW15 + BD (113.6 ± 31.03 pg/mL) was significantly higher than that of the JW15 (67.9 ± 15.15 pg/mL). Collectively, combination W. cibaria JW15 and water extract of BD and BD have ability to induce synergistic immunomodulative effects and are suitable for consideration as a functional food for humans and functional feed additives for companion animals.
The objective of this study was to investigate the immunomodulatory effects mixed with Weissella cibaria JW15 strain and black soybean (Glycine max (L.) Merr.). In this experiment, JW15 was cultured in De Man Rogosa and Sharpe (MRS) broth at 37% for 17 hr, and the cells were washed twice with sterile phosphate buffered saline (PBS) (pH 7.2). And black soybean was extracted by ethanol or hot boiling water. The immuno-modulatory effects of mixed JW15 and black soybean extract were investigated by measuring the production of nitric oxide (NO), nuclear factor κB (NF-κB) and cytokine (Interleukin-1β and Tumor necrosis factor-α) in RAW 264.7 macrophage cells or RAW blue cells. The 0.1 % ethanol and hot water extract of black soybean increased NO, NF-κB, and cytokine production in a concentration dependent manner. The NF-κB activation by JW15 mixed with 0.1 % hot water extract of black soybean (0.26 ± 0.02) was significantly higher than JW15 alone (0.20 ± 0.02). Also, combination of JW15 and 0.1% hot water extract of black soybean triggered IL-1β production of 110.19 ± 4.38 pg/mL, which was significantly greater than the JW15 alone (12.06 ± 7.58 pg/mL). The results of this study indicate that combination of Weissella cibaria JW15 and black soybean extract may have an ability to activate innate immune response synergistically. According to these results, the mixture of JW15 and black soybean extract could hold great promise for use in probiotics.
The aim of this study was to evaluate immunopotentiating activities of β-glucan derived from Saccharomyces (S.) cerevisiae and to select new strains having possibility as an immune-enhancing substance. We examined SB20 strains derived from commercial product as a control, and extracted β-glucans from the four strains of S. cerevisiae. RAW264.7 macrophages were treated with heat-killed yeasts, β-glucans, and lipopolysaccharide (LPS). The production of nitric oxide (NO) and cytokines such as TNF-α and IL-1β were then quantified. When macrophages were induced directly by in vitro addition of β-glucan, little production of NO and IL-1β was observed. When pretreated with strong stimulants, i.e., LPS, most yeasts showed down-modulation of NO and IL-1β production. However, TNF-α secretion was triggered by β-glucans and even more increased by the mixture effect of LPS and β-glucans. In particular, S6 strain induced TNF-α secretion more than other strains. Therefore, we can conclude that the S6 strain has possibility as an immune-enhancing substance.
In this study, β-1,3/1,6-glucan, lactic acid bacteria, and β-1,3/1,6-glucan+lactic acid bacteria were tested for 10 weeks using an immunodeficient animal model infected with LP-BM5 murine AIDS virus On the immune activity. Cytokines production, plasma immunoglobulin concentration, T cell and B cell proliferation were measured. As a result, the T cell proliferative capacity which was weakened by immunization with LP-BM5 murine AIDS virus increased significantly T cell proliferative capacity compared with the red ginseng control group. B cell proliferative capacity was significantly higher than the infected control group. Increased B cell proliferation was reduced. In the cytokine production, IL-2, IL-12 and IL-15 in the Th1-type cytokine increased the secretion of IL-2, IL-12 and IL-15 compared to the infected control. The proliferative capacity of the treated group was higher than that of the mixed treatment group. TNF-α was significantly decreased compared with the infected control group. The IL-4, IL-6 and IL-10 levels were significantly inhibited in the infected control group and the Th1/Th2 type cytokine expression was regulated by immunohistochemistry. IgE, IgA, and IgG levels were significantly lower in the immunoglobulin secretion assay than in the control. As a result, the immunomodulatory effect of β-1,3/1,6-glucan+lactic acid bacteria was confirmed by mixing with LP-BM5 murine AIDS virus-infected immunodeficient animal model.