검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 30

        1.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        An irradiation hardening of Inconel 718 produced by selective laser melting (SLM) was studied based on the microstructural observation and mechanical behavior. Ion irradiation for emulating neutron irradiation has been proposed owing to advantages such as low radiation emission and short experimental periods. To prevent softening caused by the dissolution of ' and '' precipitates due to irradiation, only solution annealing (SA) was performed. SLM SA Inconel 718 specimen was ion irradiated to demonstrate the difference in microstructure and mechanical properties between the irradiated and non-irradiated specimens. After exposing specimens to Fe3+ ions irradiation up to 100 dpa (displacement per atom) at an ambient temperature, the hardness of irradiated specimens was measured by nanoindentation as a function of depth. The depth distribution profile of Fe3+ and dpa were calculated by the Monte Carlo SRIM (Stopping and Range of Ions in Matter)-2013 code under the assumption of the displacement threshold energy of 40 eV. A transmission electron microscope was utilized to observe the formation of irradiation defects such as dislocation loops. This study reveals that the Frank partial dislocation loops induce irradiation hardening of SLM SA Inconel 718 specimens.
        4,000원
        2.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present work, Inconel 718 alloy is additively manufactured on the Ti-6Al-4V alloy, and a functionally graded material is built between Inconel 718 and Ti-6Al-4V alloys. The vanadium interlayer is applied to prevent the formation of detrimental intermetallic compounds between Ti-6Al-4V and Inconel 718 by direct joining. The additive manufacturing of Inconel 718 alloy is performed by changing the laser power and scan speed. The microstructures of the joint interface are characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and micro X-ray diffraction. Additive manufacturing is successfully performed by changing the energy input. The micro Vickers hardness of the additive manufactured Inconel 718 dramatically increased owing to the presence of the Cr-oxide phase, which is formed by the difference in energy input.
        4,000원
        3.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 손상된 선박용 절탄기 핀튜브에 대하여 보수를 목적으로 Inconel 625 아크 열용사 코팅기술 적용 후 실링처리를 실시하였다. 모재(Substrate), 열용사 코팅(Thermal Srpay Coating; TSC) 그리고 열용사 코팅+실링처리(TSC+Sealing) 시편에 대하여 내구성을 평가하기 위해 ASTM G76-05에 의거하여 고상입자 침식(Solid Particle Erosion; SPE) 실험을 실시하였다. 표면 손상 형상은 주사전자현미경과 3D 레이져 현미경을 통해 관찰했으며, 무게 감소량과 표면 거칠기 분석을 실시하여 내구성을 평가하였다. 그 결과 내구성은 TSC와 TSC+Sealing에 비해 Substrate가 우수하게 나타났으며, 이는 TSC 층 내에 존재하는 다수의 기공 결함에 기인한 것으로 판단된다. 또한 고상 입자 침식 손상 메카니즘은 Substrate의 경우 연성 재질 특성인 소성변형과 피로에 의한 균열 생성이 동반되었으며, TSC와 TSC+Sealing의 경우 취성파괴 경향이 확인되었다.
        4,000원
        4.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 절탄기 튜브의 저온부식 손상을 방지하기 위해 Inconel 625 용사재료를 활용하여 아크 열용사 코팅기술 적용 후 실링 처리를 실시하였다. 용사코팅(TSC) 층의 내식성 분석을 위해 0.5 wt% 황산 수용액에서 다양한 전기화학적 실험을 진행하였다. 양극분극 실험 후에는 주사전자현미경과 EDS 성분분석을 통해 부식 손상 정도를 파악하였다. 자연전위 계측 시 TSC+실링처리(TSC+Sealing)의 안정적인 전위 형성을 통해 실링처리 효과를 확인하였다. 양극분극 실험 결과 TSC와 TSC+Sealing에서 부동태 영역이 확인되었으며, 부식 손상 역시 관찰되지 않아 내식성이 개선되었다. 더불어 타펠분석에 의해 산출된 부식전위와 부식전류밀도 분석 결과 TSC+Sealing의 내식성이 가장 우수하게 나타났다.
        4,000원
        6.
        2020.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The corrosion behavior of the Inconel X-750 alloy was investigated for its potential application under a Cl2-O2 mixed gas flow in an Ar atmosphere. The corrosion rate was found to be negligible at temperatures up to 400℃ under a flow rate of 30 mL·min-1 Cl2 + 170 mL·min-1 Ar, whereas an exponential increase was observed in the corrosion rate at temperatures greater than 500℃. The suppression of the corrosion reaction due to the presence of O2 was verified experimentally at flow rates of 30 mL·min-1 Cl2 (4.96 g·m-2·h-1), 20 mL·min-1 Cl2 + 10 mL·min-1 O2 (2.02 g·m-2·h-1), and 10 mL·min-1 Cl2 + 20 mL·min-1 O2 (1.34 g·m-2·h-1) under a constant Ar flow rate of 170 mL·min-1 at 600℃ for 8 h. The surface morphology analysis results revealed that porous surfaces with tunnel-type holes were produced under the Cl2-O2 mixed-gas condition. Furthermore, the effects of the Cl2 flow rate on the corrosion rate were investigated, indicating that its impact was negligible within the range of 5–30 mL·min-1 Cl2 at 600℃.
        4,000원
        8.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The directed energy deposition (DED) process of metal 3D printing technologies has been treated as an effective method for welding, repairing, and even 3-dimensional building of machinery parts. In this study, stainless steel 316L (STS316L) and Inconel 625 (IN625) alloy powders are additively manufactured using the DED process, and the microstructure of the fabricated STS316L/IN625 sample is investigated. In particular, there are no secondary phases in the interface between STS316L and the IN625 alloy. The EDS and Vickers hardness results clearly show compositionally and mechanically transient layers a few tens of micrometers in thickness. Interestingly, several cracks are only observed in the STS 316L rather than in the IN625 alloy near the interface. In addition, small-sized voids 200– 400 nm in diameter that look like trapped pores are present in both materials. The cracks present near the interface are formed by tensile stress in STS316L caused by the difference in the CTE (coefficient of thermal expansion) between the two materials during the DED process. These results can provide fundamental information for the fabrication of machinery parts that require joining of two materials, such as valves.
        4,000원
        10.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This research is about a study on the flow stress of Inconel 601 under hot deformation. For Inconel 601, hot compression tests on gleeble 3500 system under 925℃, 1050℃ and 1150℃ and 0.001/s, and 5/s of strain rates were done. The flow behavior of the Inconel 601 was studied and modeled. In this study, the flow stress was modeled using deep neural network and support vector regression algorithm. The flow stress of Inconel 601 was dependent on strain rate and temperature. It was found that both the deep neural network and support vector regression adequately described the flow stress variation of Inconel 601. However, the model by the support vector regression was found to be superior to the model by the deep neural network. The construction of the model by SVR was more efficient than the construction by DNN. Also the prediction accuracy of the model by SVR was better than the accuracy of the model by DNN. It is found that the MAPE(Mean absolute percentage error) of the DNN based model was 4.89% while the MAPE of the SVR based model was 1.98%.
        4,000원
        13.
        2017.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to investigate the low-cycle fatigue behavior of Inconel 718 alloy used for pressure vessels, the strain-controlled fatigue test was performed in the room and high temperatures of 550°C. High temperature test was done using an electric furnace attached on the hydraulic fatigue test system. Tensile strength and elastic modulus of the Inconel 718 alloy at the temperature of 550°C decreased by 8% and 10%, respectively, compared to those at the room temperature. Subjected to the repeated cyclic loading under the strain-control, the material exhibited cyclic softening behavior with decreasing yield strength at both room and high temperatures. The low-cycle fatigue properties determined in this research could be effectively used for the fatigue life estimation of high temperature components made of Inconel 718 alloy.
        4,000원
        15.
        2015.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Material for high-speed airframe are typically selected such that high ablation resistance is maintained on the material surface while high pull-strength is maintained inside the material. However, in case of application to extremely severe condition, the material should have better mechanical properties. Thus, heat treatment or surface treatment is utilized to improve the mechanical properties. This study is conducted as a preliminary research to improve the mechanical properties of vehicle material considering the frictional heat produced during high-speed vehicle is in motion. In this study, Inconel 625 alloy, widely used material for the application of high-speed air vehicle, is ion nitriding processed and then mechanical property test and wear test on this material are conducted consequently. As results, mechanical properties such as tensile strength, yield strength and hardness are increased, and also wear rate is increased at particular condition.
        4,000원
        16.
        2013.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To evaluate the development of the microstructure and mechanical properties on surface modified and post-heat-treated Inconel 718 alloy, this study was carried out. A friction stir process as a surface modification method was employed,and overlap welded Inconel 718 alloy as an experimental material was selected. The friction stir process was carried out ata tool rotation speed of 200 rpm and tool down force of 19.6-39.2kN; post-heat-treatment with two steps was carried out at720oC for 8h and 620oC for 6h in vacuum. To prevent the surface oxidation of the specimen, the method of using argongas as shielding was utilized during the friction stir process. As a result, applying the friction stir process was effective todevelop the grain refinement accompanied by dynamic recrystallization, which resulted in enhanced mechanical properties ascompared to the overlap welded material. Furthermore, the post-heat-treatment after the friction stir process accelerated theformation of precipitates, such as gamma prime (γ') and MC carbides, which led to the significant improvement of mechanicalproperties. Consequently, the microhardness, yield, and tensile strengths of the post-heat-treated material were increased morethan 110%, 124% and 85%, respectively, relative to the overlap welded material. This study systematically examined therelationship between precipitates and mechanical properties.
        4,000원
        17.
        2013.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A study on the corrosion behavior of Inconel alloys and Incoloy 800H in molten salt of LiCl-Li2O was investigated at 650˚C for 24-312 hours in an oxidation atmosphere. The order of the corrosion rate was Inconel 600< Inconel 601< Incoloy 800H< Inconel 690. Inconel 600 showed the best performance suggesting that the content of Fe, Cr and Ni are the important factor for corrosion resistance in hot molten salt oxidation conditions. The corrosion products of Inconel 600 and Inconel 601 were Cr2O3 and NiFe2O4, In case of Inconel 690, a single layer of Cr2O3 was formed in the early stage of corrosion and an outer layer of NiFe2O4 and inner layer of Cr2O3 were formed with an increase of corrosion time. In the case of Incoloy 800H, Cr2O3 and FeCr2O4 were observed. Most of the outer scale of the alloys was observed to be spalled from the results of the SEM analysis and the unspalled scale which adhered to the substrate was composed of three layers. The outer layer, the middle one, and the inner one were Fe, Cr, and Ni-rich, respectively. Inconel 600 showed localized corrosion behavior and Inconel 601, 690 and Incoloy 800H showed uniform corrosion behavior. Ni improves the corrosion resistance and too much Cr and/or Fe content deteriorates the corrosion resistance.
        4,000원
        18.
        2012.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A capsule is the device for irradiation test of nuclear materials and fuels in HANARO. The instrumentation cables are sealed tightly by brazing at the top of the capsule. In this study, the integrities at the brazing of both Inconel 600 and STS 310 materials were confirmed by tensile test, survey of damage on coating, and measurement of insulation resistance. At tensile test, brazing areas were not damaged but the thermocouples themselves were broken on both the materials. At flame heat test, the coating of STS 310 material was maintained without damage but the brittle fracture on Inconel 600 material was observed. Insulation resistances were confirmed to be satisfactory in case of both the materials. In this analysis, the thermocouple was expanded by 0.81mm on the direction of y-axis and the tube was contracted by 0.57mm on the direction of x-axis. As the result, cracks might be occurred with thermal stresses. EDX spectrum analysis showed that the BAg-1 filler metal formed a thin reaction layer on the surface of brazed metal.
        4,000원
        19.
        2012.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The microstructures and mechanical properties of friction stir welded lap joints of Inconel 600 and SS 400 were evaluated; friction stir welding was carried out at a tool rotation speed of 200 rpm and welding speed of 100 mm/min. Electron back-scattering diffraction and transmission electron microscopy were introduced to analyze the grain boundary characteristics and the precipitates, respectively. Application of friction stir welding was notably effective at reducing the grain size of the stir zone. As a result, the reduced average grain size of Inconel 600 ranged from 20μm in the base material to 8.5μm in the stir zone. The joint interface between Inconel 600 and SS 400 showed a sound weld without voids and cracks, and MC carbides with a size of around 50 nm were partially formed at the Inconel 600 area of lap joint interface. However, the intermetallic compounds that lead to mechanical property degradation of the welds were not formed at the joint interface. Also, a hook, along the Inconel 600 alloy from SS 400, was formed at the advancing side, which directly brought about an increase in the peel strength. In this study, we systematically discussed the evolution of microstructures and mechanical properties of the friction stir lap joint between Inconel 600 and SS 400.
        4,000원
        20.
        2009.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Inconel 718 alloy has excellent mechanical properties at room temperature, high temperature and cryogenic conditions. UTS of base metal is about 900MPa at room temperature; this is increased up to 1300MPa after heat treatment & aging-hardening. Mechanical properties of Inconel 718 Alloy were similar to those shown in the the results for tensile test; mechanical properties of Inconel 718 alloy's GTAW were similar to those of base metal's properties at room temperature. Mechanical properties at cryogenic conditions were better than those at room temperature. Heat-treated Inconel 718, non- filler metal GTAW on Inconel 718 and GTAW used filler metal on Inconel 718's UTS was 1400MPa at cryogenic condition. As a result, the excellent mechanical properties of Inconel 718 alloy under cryogenic conditions was proved through tensile tests under cryogenic conditions. In addition, weldability of Inconel 718 alloy under cryogenic conditions was superior to that of its base-metal. In this case, UTS of hybrid joint (IS-G) at -100˚C was 900MPa. Consequently, UTS of Inconel 718 alloy is estimated to increase from -100˚C to a specific temperature below -100˚C. Therefore, Inconel 718 alloy is considered a pertinent material for the production of Lox Pipe under cryogenic conditions.
        4,000원
        1 2