검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 29

        1.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study aimed to compare the object detection performance based on various analysis methods using point-cloud data collected from LiDAR sensors with the goal of contributing to safer road environments. The findings of this study provide essential information that enables automated vehicles to accurately perceive their surroundings and effectively avoid potential hazards. Furthermore, they serve as a foundation for LiDAR sensor application to traffic monitoring, thereby enabling the collection and analysis of real-time traffic data in road environments. METHODS : Object detection was performed using models based on different point-cloud processing methods using the KITTI dataset, which consists of real-world driving environment data. The models included PointPillars for the voxel-based approach, PartA2-Net for the point-based approach, and PV-RCNN for the point+voxel-based approach. The performance of each model was compared using the mean average precision (mAP) metric. RESULTS : While all models exhibited a strong performance, PV-RCNN achieved the highest performance across easy, moderate, and hard difficulty levels. PV-RCNN outperformed the other models in bounding box (Bbox), bird’s eye view (BEV), and 3D object detection tasks. These results highlight PV-RCNN's ability to maintain a high performance across diverse driving environments by combining the efficiency of the voxel-based method with the precision of the point-based method. These findings provide foundational insights not only for automated vehicles but also for traffic detection, enabling the accurate detection of various objects in complex road environments. In urban settings, models such as PV-RCNN may be more suitable, whereas in situations requiring real-time processing efficiency, the voxelbased PointPillars model could be advantageous. These findings offer important insights into the model that is best suited for specific scenarios. CONCLUSIONS : The findings of this study aid enhance the safety and reliability of automated driving systems by enabling vehicles to perceive their surroundings accurately and avoid potential hazards at an early stage. Furthermore, the use of LiDAR sensors for traffic monitoring is expected to optimize traffic flow by collecting and analyzing real-time traffic data from road environments.
        4,000원
        3.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        딥러닝을 이용하여 항공 및 위성 영상 속의 다양한 공간객체를 탐지하는 연구들이 증가하고 있다. 매년 급속하게 증가하는 위성 및 항공사진과 같은 원격탐사의 자료 속에서 특정 공간객체들을 수작업으로 탐지하는 것은 한계를 갖는다. 본 연구에서는 딥러닝의 객체 탐지기법을 이용하여 토지피복도 내 공간객체들에 대한 탐지를 시도하였다. 데이터는 국토지리정보원의 항공사진을 활용하였고 농경지에 해당하는 논, 밭, 하우스 재배지 등의 객체들을 탐지하였다. 토지피복을 구성하는 다양한 공간객체들에 대한 탐지를 통해 YOLOv5 모델의 활용 가능성을 탐색하였다.
        4,300원
        4.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        양식장 부표 등과 같은 해상의 소형 장애물을 탐지하고 거리와 방위를 시각화시켜 주는 해상물체탐지시스템은 선체운동으로 인한 오차를 보정하기 위해 3축 짐벌이 장착되어 있지만, 파도 등에 의한 카메라와 해상물체의 상하운동으로 발생하는 거리오차를 보정 하지 못하는 한계가 있다. 이에 본 연구에서는 외부환경에 따른 수면의 움직임으로 발생하는 해상물체탐지시스템의 거리오차를 분석하 고, 이를 평균필터와 이동평균필터로 보정하고자 한다. 가우시안 표준정규분포를 따르는 난수를 이미지 좌표에 가감하여 불규칙파에 의 한 부표의 상승 또는 하강을 재현하였다. 이미지 좌표의 변화에 따른 계산거리, 평균필터와 이동평균필터를 통한 예측거리 그리고 레이저 거리측정기에 의한 실측거리를 비교하였다. phase 1,2에서 불규칙파에 의한 이미지 좌표의 변화로 오차율이 최대 98.5%로 증가하였지만, 이동평균필터를 사용함으로써 오차율은 16.3%로 감소하였다. 오차보정 능력은 평균필터가 더 좋았지만 거리변화에 반응하지 못하는 한계 가 있었다. 따라서 해상물체탐지시스템 거리오차 보정을 위해 이동평균필터를 사용함으로써 실시간 거리변화에 반응하고 오차율을 크게 개선할 수 있을 것으로 판단된다.
        4,000원
        5.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        해양사고 발생시 실종자는 해양에 노출된 시간이 길어질수록 생존확률이 빠르게 감소하기 때문에 인명구조를 위해서는 신 속한 수색이 필요하다. 또한 해양의 수색영역은 육상에 비해서 매우 넓기 때문에 효율적인 수색을 위해서는 선박을 이용한 육안수색보 다는 인공위성이나 항공기에 탑재된 센서를 이용한 해상 객체 탐지 기술의 적용이 필요하다. 본 연구는 항공기에 탑재된 초분광 영상 센서를 이용하여 해양에서 객체를 신속하게 탐지하기 위한 목적으로 진행되었다. 초분광 영상 센서로 촬영된 영상은 8,241 × 1,024의 공간 해상도를 가지며, 한 화소당 0.7 m의 분해능과 127개의 스펙트럼으로 구성된 대용량의 데이터이다. 본 연구에서는 이러한 데이터 를 신속하게 분석하기 위한 목적으로 DBSCAN을 사용한 해수 식별 알고리즘과 밀도 기반의 육지 제거 알고리즘을 결합한 해상 객체 탐지 모델을 개발하였다. 개발한 모델은 초분광 영상에 적용하였을 때 약 5 km2의 해상 영역을 100초 내로 분석할 수 있는 성능을 보 였다. 또한 개발한 모델의 탐지 정확도를 평가하기 위해서 항공기를 이용하여 목포, 군산, 여수 지역의 초분광 영상을 촬영하였으며, 본 연구에서 개발한 탐지 모델에 적용한 결과, 실험 영상 내의 선박들을 90 %의 정확도로 탐지할 수 있는 결과를 얻었다. 본 연구에서 개발된 기술은 소형 선박의 수색·구조 활동을 지원하는 중요한 정보로 활용될 수 있을 것으로 기대한다.
        4,000원
        9.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        자율운항선박이 상용화되어 연안을 항해하기 위해서는 해상의 장애물을 탐지할 수 있어야 한다. 연안에서 가장 많이 볼 수 있 는 장애물 중의 하나는 양식장의 부표이다. 이에 본 연구에서는 YOLO 알고리즘을 이용하여 해상의 부표를 탐지하고, 카메라 영상의 기하 학적 해석을 통해 선박으로부터 떨어진 부표의 거리와 방위를 계산하여 장애물을 시각화하는 해상물체탐지시스템을 개발하였다. 1,224장 의 양식장 부표 사진으로 해양물체탐지모델을 훈련시킨 결과, 모델의 Precision은 89.0 %, Recall은 95.0 % 그리고 F1-score는 92.0 %이었다. 얻 어진 영상좌표를 이용하여 카메라로부터 떨어진 물체의 거리와 방위를 계산하기 위해 카메라 캘리브레이션을 실시하고 해상물체탐지시 스템의 성능을 검증하기 위해 Experiment A, B를 설계하였다. 해상물체탐지시스템의 성능을 검증한 결과 해상물체탐지시스템이 레이더보 다 근거리 탐지 능력이 뛰어나서 레이더와 더불어 항행보조장비로 사용이 가능할 것으로 판단된다.
        4,000원
        11.
        2021.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Through the process of chemical vapor deposition, Tungsten Hexafluoride (WF6) is widely used by the semiconductor industry to form tungsten films. Tungsten Hexafluoride (WF6) is produced through manufacturing processes such as pulverization, wet smelting, calcination and reduction of tungsten ores. The manufacturing process of Tungsten Hexafluoride (WF6) is required thorough quality control to improve productivity. In this paper, a real-time detection system for oxidation defects that occur in the manufacturing process of Tungsten Hexafluoride (WF6) is proposed. The proposed system is implemented by applying YOLOv5 based on Convolutional Neural Network (CNN); it is expected to enable more stable management than existing management, which relies on skilled workers. The implementation method of the proposed system and the results of performance comparison are presented to prove the feasibility of the method for improving the efficiency of the WF6 manufacturing process in this paper. The proposed system applying YOLOv5s, which is the most suitable material in the actual production environment, demonstrates high accuracy (mAP@0.5 99.4 %) and real-time detection speed (FPS 46).
        4,000원
        13.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 게임 영상과 같은 생성된 영상으로부터 물체를 인식하는 심층 학습 기반 모델의 성능을 향상 시키는 방법을 제시한다. 특히, 실제 영상으로 훈련된 물체 인식 모델에 대해서 게임 영상으로 추가 훈련을 수행함으로써 물체 인식 성능이 향상됨을 검증한다. 본 연구에서는 심층 학습 기반의 물체 인식 모델들 중에서 가장 널리 사용되는 YoloV2 모델을 이용한다. 이 모델에 대해서 8 종류의 다양한 게임에서 샘플링한 160장의 게임 영상을 적용해서 물체 인식 모델을 다시 훈련하고, IoU와 정확도를 측정해서 본 연구에서 주장하는 게임 영상을 이용한 훈련이 효과적임을 입증한다.
        4,000원
        19.
        2013.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The robot in this paper combines the suction and aerodynamic attraction to achieve good balance between strong adhesion force and high mobility. Experimental results showed that the robot can move upward on the wall at the speed of 2.9m/min and carry 5kg payload in addition to 2.5kg self-weight, which record the highest payload capacity among climbing robots of similar size. With two 11.1V lithium-polymer battery, the robot can operate continuously for half hours. A wireless camera system, zigbee protocol module and several sensors was adopted for detecting dangerous situation on the wall and for sending alarm signals to remote sensor node or controller based on the color normalization and image segmentation technique.
        4,000원
        20.
        2008.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 3D 그래픽에서 빠르고 정확한 충돌검사(collision-detection)는 3D공간에서 표준객체를 중심으로 하는 연구가 많이 이루어져 왔다. 3D그래픽 분야에서 H/W의 놀라운 발달과 다양한 3D그래픽 관련 논문에서 3D객체의 충돌 속도의 성능 향상뿐만 아니라 사실적인 표현에 깊은 관심을 가지고 있다. 3D 그래픽 알고리즘 중에서 표준 3D 객체의 다양한 충돌 알고리즘을 특징을 분석하고, 기존의 3D 객체의 단순한 계층 구조에서 LOD(Level-of-Detail)를 이용한 알고리즘를 제안한다. 이 알고리즘을 이용하여 3D공간상에서 LOD(Level-of-Detail) 알고리즘을 적용시켜서, LOD단계가 높은 (가까운) 곳에서는 객체의 유향상자를 자세히 검사하고, LOD단계가 낮은(먼곳)에 위치한 객체의 유향상자는 간략히 검사를 적용3D객체가 3D 공간상에서 충돌검사의 성능을 향상시키고 3D 그래픽에서 중요한 요소인 3차원 공간상의 효율적인 렌더링과 사실적인 표현을 제안하여 실시간을 중요시 하는 3D 게임에서 사실감과 효율성을 높였다.
        4,000원
        1 2