본 연구는 중요한 탄소흡수원의 역할을 하는 산림생태계 탄소흡수 잠재력을 분석하고 이를 통해 탄소 공간지도 제작을 목표로 한다. 연구지역은 대한민국 전역으로, 시도 및 시군구의 공간 단위로 분석을 진행하였으며. 첫째, 침엽수림(Conifers), 활엽수림(Non-Conifers), 혼효림(Mixed), 상록활엽수림(Evergreen broadleaf forests), 죽림(Bamboo)의 면적을 지역별로 산정한 후, 이들 면적에 대한 연간 이산화탄소흡수량 고유계수를 적용하여 지역별 이산화탄소흡수량과 전국 단위의 흡수량을 계산하였다. 분석결과, 전체 산림지의 이산화탄소흡수량은 2010년 56,352,485t CO2/yr, 2015년 55,391,298t CO2/yr, 2020년 52,633,417t CO2/yr로 감소하는 것으로 나타났다. 산림면적의 감소가 주요 감소 원인으로 분석되었고, 부분적으로 기후변화 등에 따른 식생의 종조성 변화도 원인으로 나타났다. 이에 더하여, 상록활엽수림 및 죽림의 면적을 기반으로 탄소흡수량을 분석한 결과 상록활엽수는 55,928t CO2/yr, 죽림은 591,183.4t CO2/yr의 이산화탄소흡수량을 얻을 수 있었다. 지자체별 탄소흡수량 분석결과에서는 태백산맥, 소백산맥을 포함하고 있는 시군구가 다른 지역에 비해 산림지역의 이산화탄소흡수량이 많다는 것을 파악되었고, 대구광역시, 광주광역시, 대전광역시 등 대도시 인접 지역은 상대적으로 이산화탄소흡수량이 적음을 확인할 수 있었다. 결론적으로, 우리나라 탄소중립 실현을 위한 탄소흡수원으로써 산림지의 관리에 있어서 산정체계의 고도화가 필요하다. 특히 기후변화에 따라 변화될 식생대의 분포와 식생별 수목의 종조성 변화를 고려한 임목별 연령별 흡수계수 산정 자료 구축이 필요하다. 본 연구에서 제시한 상록활엽수와 죽림의 경우가 중요한 예시가 될 것이다. 또한, 탄소흡수량 감소에 가장 중요한 요인이 산림면적 감소인 것을 고려할 때, 산림지 면적의 회복을 위한 적극적인 복원 정책의 수립과 이행이 요구되며, 죽림 등 탄소흡수량이 높은 식생의 보전, 확대를 위한 지속 가능한 관리 정책 마련이 필요하다. 특히, 산림면적의 회복을 위하여 지자체 단위에서 면적 기반 산림관리와 지역 단위에서 유역기반의 통합된 산림관리 정책과 이행 방안 마련이 시급하다.
Carbon is a part of all living creatures and it is the chief constructing block for life on this planet carbon occurs in several appearances, mainly as plant biomass, organic matter in soil, as gas CO2 in the air and dissipated in seawater. Soil carbon exhausts when production of carbon increases than carbon contribution. Soil comprises nearly 75% of total carbon existing on land, more than the quantity stockpiled in living animals and plants. So, soil plays a major part in maintaining a stable carbon cycle. Over the previous 150-year-period, the quantity of carbon present in the air has amplified by 30%. Majority of scientists thought that there is a straight relationship amongst amplified levels of CO2 in the air and increasing global warming. One anticipated technique to diminish atmospheric CO2 is to escalate the global packing of carbon in soils. Therefore, there is a necessity to manage soils because soil comprises more inorganic carbon as compared to the atmosphere and more organic carbon as compared to the biosphere. Soil is also thought to be a lively and important constituent in global carbon discharge and potential of sequestration. Carbon sequestration, known commonly as C-storage, can be acquired by different controlling practices, and the size of various management techniques, to enhance C-storage of soil and offer a key basin for atmospheric CO2, can be assessed most persuasively from studies conducted over long time that underwrite exclusive data on soil C accumulation, losses and storage. Sequestration happens when input of carbon enhances as compared to output of carbon. Soil carbon sequestration is the method of relocating CO2 from the air in to the soil with crop leftover and additional organic solids and in a configuration that is not instantly emitted back to the atmosphere. This review focused on beneficial role of carbon sequestrating fertilizers (press mud, boiler ash and compost) in carbon sequestration and soil properties.
Novel eco-friendly adsorbents were prepared through pyrolysis and acid activation of raw almond leaf (RAL) to form almond leaf biochar (ALB) and chemically activated almond leaf biochar (CAL), respectively. The prepared adsorbents were characterized using TGA, FTIR, SEM–EDX, BET and XRD techniques and their physicochemical properties investigated. RAL, ALB and CAL were utilized for adsorption of BPB dye from aqueous solution using batch technique under optimum conditions. The optimum dye adsorbed by RAL, ALB and CAL were 92.83, 93.21 and 94.89%, respectively at pH 3, dye initial conc. (100 mg/L), adsorbent dose (0.04 g/25 mL), 60 min contact time and 301 K adsorption temperature. Although, Langmuir maximum monolayer adsorption capacities were found to be 365.36, 535.62 and 730.46 mg/g for RAL, ALB and CAL, respectively, but isotherm conformed to Freundlich model. Kinetic study confirmed suitability of pseudo-second-order model with rate constant 9.33 × 10–4, 9.91 × 10–4 and 12.60 × 10−4 g mg−1 min−1 for RAL, ALB and CAL, respectively. Negative values of thermodynamic parameters (ΔG and ΔH) established sequestration process to be spontaneous and exothermic. RAL, ALB and CAL were discovered to be highly efficient adsorbents that could be used in place of expensive commercial adsorbents.
Sulfur copolymer (poly(S-r-CEA)) was synthesized via facile inverse vulcanization of elemental sulfur with 2-carboxyethyl acrylate (CEA). Polysulfide (PS) oligomer was soluble to common solvents including DMF, producing homogenous dope solution with PAN as filler. PS-PAN was electrospun resulting to nanofiber membrane effective for Hg2+ sequestration with recorded maximum capacity of 612 mg g-1 based on Langmuir model isotherm. Kinetics, selectivity and reusability were also evaluated. This work presents new and cheap yet effective material for heavy metal sequestration from contaminated water. This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2015R1A2A1A15055407) and by the Ministry of Education (No. 2009-0093816).
Objective of this study was to evaluate the carbon budget on 40 years old pear orchard at Naju. For carbon budget assessment, we measured the soil respiration, net ecosystem productivity of herbs, pear biomass and net ecosystem exchange. In 2015, pear orchard released about 25.6 ton CO2 ha-1 by soil respiration. And 27.9 ton CO2 ha-1 was sequestrated by biomass growth. Also about 12.6 ton CO2 ha-1 was stored at pruning branches and about 5.2 ton CO2 ha-1 for photosynthesis of herbs. As a result, 25.6 ton of CO2 per ha is annually released to atmosphere. At the same time about 45.7 ton of CO2 was sequestrated from atmosphere. When it sum up the amount of CO2 release and sequestration, approximately 20.1 ton CO2 ha-1 was sequestrated by pear orchard in 2015, and it showed no significant differences with net ecosystem exchanges (17.8 ton CO2 ha-1 yr-1) by eddy covariance method with the same period. Continuous research using various techniques will help the understanding of CO2 dynamics in agroecosystem and it can be able to present a new methodology for assessment of carbon budget in woody crop field. Futhermore, it is expected that the this study can be used as the basic data to be recognized as a carbon sink.
Novel processable sulfur copolymer (poly(S-r-CEA)) was synthesized via facile inverse vulcanization of elemental sulfur with 2-carboxyethyl acrylate (CEA). This polysulfide was electrospun producing sulfur-rich nanofiber and tested for heavy metal sequestration. Adsorption experiments show very high and efficient Hg2+ adsorption. This work extends the novelty of inverse vulcanization chemistry by developing method for preparation of material based on inverse vulcanized polysulfide. Consequently, a new and cheap yet effective material was prepared for heavy metal sequestration from contaminated water. This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2015R1A2A1A15055407) and by the Ministry of Education (No. 2009-0093816).
본 연구는 강원도에 위치한 오크밸리 관광단지 내 36홀 골프코스를 대상으로 골프장의 추가식재가 탄소흡수량을 얼마나 증가시키는지를 추정하였다. 보식 혹은 신규 식재에 의한 탄소흡수량은 현지답사와 고해상도 항공사진을 활용하여 식재가능 지역을 분석하고 적정 식재 밀도를 파악한 후 바이오매스 상대생장법을 이용하여 계산하였다. 연구대상 골프코스 중 식재지는 전체 조사대상 면적의 30.3%를 차지하고 있었으며 나머지 69.7%는 잔디 식재지, 수면, 모래땅, 기타 시설지역이었다. 잔디식재 지역 중 식재가 가능한 지역은 총 106,101m2(전체면적의 6.0%)로 분석되었고 기존 수목 식재지 중 식재밀도가 현저히 낮은 지역은 177,531m2(전체 면적의 10.1%)를 차지하고 있었다. 신규식재가 가능한 지역은 흉고직경 10cm의 수목을 0.3주/m2의 밀도로, 추가적인 식재가 가능한 지역은 동일규격의 수목을 0.2주/m2의 밀도로 식재하는 것을 가정한 결과 추가 식재 가능 수목은 총 67,336주로 나타났다. 식재수종을 신갈나무로 가정할 때 최초 식재 후 1년 간 총 탄소흡수량은 392.9tC/yr으로 예측되었다. 연간 탄소흡수량은 식재 후 15년째에 총 440.5tC/yr로 정점에 이르는 것으로 분석되었다. 이를 오크밸리 관광단지 중 연구대상지 일원의 연간 탄소배출량과 비교할 때 식재 후 1년째 탄소흡수량은 12.5%에 이르며, 신규로 식재한 수목의 탄소흡수량이 정점에 이르는 조성 후 15년이 경과한 시점에서는 연간 탄소배출량의 14.0%까지 증가하는 것으로 예측되었다.
Crushed, depitted peach stones were impregnated activated with 50% H3PO4 followed by pyrolysis at 500℃. Two activated carbons were produced, one under its own evolved gases during pyrolysis, and the second conducted with air flow throughout the carbonization stage. Physicochemical properties were investigated by several procedures; carbon yield, ash content, elemental chemical analysis, TG/DTG and FTIR spectra. Porosity characteristics were determined by the conventional N2 adsorption at 77 K, and data analyzed to get the major texture parameters of surface area and pore volume. Highly developed activated carbons were obtained, essentially microporous, with slight effect of air on the porous structure. Oxygen was observed to be markedly incorporated in the carbon matrix during the air treatment process. Cation exchange capacity towards Cu (II) and Cd (II) was tested in batch single ion experimental mode, which proved to be slow and a function of carbon dose, time and initial ion concentration. Copper was up taken more favorably than cadmium, under same conditions, and adsorption of both cations was remarkably enhanced as a consequence of the air treatment procedure. Sequestration of the metal ions was explained on basis of the combined effect of the oxygen functional groups and the phosphorous-containing compounds; both contributing to the total surface acidity character.
Municipal solid waste incinerator (MSWI) fly ash was used for accelerated carbonation via bubbling of gaseous carbon dioxide (CO2) after treatment with sodium hydroxide (NaOH). The influence of alkaline concentration and volumetric flowrate of CO2 was investigated. Experimental results showed that carbonation reduced the leaching of Cu, Pb, Zn, and Cr. The pH of leachate decreased from around 12 to 10.5. The content of soluble chlorides was also decreased after carbonation. Additionally, the application of accelerated carbonation enhanced the sequestration of CO2 from MSW incineration plants. The TG/DSC analysis indicated that MSWI fly ash sequestrated approximately 185 g CO2/kg waste.
Steel slag has been used as the alternative binder to replace Portland cement that furthermore used as in construction and/or for stabilization/solidification of heavy metals in mine soil. One of the treatments to modify the leaching behavior of the mine soil is by carbonation. The purpose of this study was to assess the potential of carbonation in various steel slags. Based on chemical and mineralogical characterization of four kinds of slag that were used in this study, it showed that all slags had high potential for reacting with CO2 that was in accordance with the high CaO and MgO content. CO2 sequestration by aqueous carbonation of several kinds of stainless steel slags with different liquid to solid ratio was investigated in this study. The effect of chemical properties and reaction time on the performance of the carbonation process was also investigated. Converter slag, blast furnace slag (BFS) and ladle furnace slag (LFS) were used. Carbonation experiment was conducted in a closed reactor under the conditions; 1bar, 400rpm and 25℃, with solid to liquid ratios of 0.4, 0.6 and 1.0. Carbonation kinetic test was relatively fast and completed within 5 hours. The CO2 consumption increased when the liquid to solid ratio increased because of the dilution effect. Our results showed that the higher CaO and MgO contents in the slag, the higher CO2 consumption was observed. Pohang converter slag and Dangjin LFS showed slightly different tendency. At L/S ratio 0.4, Pohang slag with higher CaO and MgO content had higher CO2 consumption than Dangjin LFS. As the water content increased, Dangjin LFS had higher CO2 consumption than Pohang converter slag that was caused by the texture of Dangjin LFS with smaller particle size than Pohang converter slag. However, both Pohang BFS and Dangjin BFS have poor capacity in CO2 sequestration.
폐콘크리트 처리 시 발생하는 시멘트 미분은 CO2 포집을 위한 광물탄산화 재료로 활용할 수 있다. 이번 연구에서는 폐콘크리트를 활용한 CO2 포집을 위한 기초연구로 수화시멘트의 수성탄산화 방안과 탄산염광물 형성 특성에 대한 자료를 확보하고자 하였다. 실험을 위해 물 : 시멘트 비를 6 : 4로 하여 28일간 수중 경화하여 시멘트 풀을 제작하고, 첨가제(NaCl과 MgCl2)를 활용한 용출실험과 두 종류의 수성탄산화(직접수성탄산화와 간접수성탄산화)실험을 수행하였다. 용출실험 결과, Ca2+ 이온의 용출은 시험된 최대 농도에서 보다 0.1 M NaCl과 0.5 M MgCl2에서 최대로 나타났으며, MgCl2는 NaCl에 비해 10배 이상의 Ca2+ 이온을 용출력을 보였다. 미분(< 0.15 mm)의 시멘트 풀은 직접수성탄산화에 의해 1시간 이내에 탄산화에 의해 포트랜다이트가 거의 모두 탄산염광물로 변화하고, CSH(calcium silicate hydrate)의 분해에 의한 탄산화도 진행되는 것으로 나타났다. 그러나 직접수성탄산화에는 NaCl과 MgCl2와 같은 첨가제가 크게 효율적이지 못하였다. NaCl과 MgCl2를 첨가제로 사용한 용출액에 대한 간접수성탄산화로 100% 순수한 방해석을 생성되었다. MgCl2에 의한 용출액의 경우 탄산화를 위해 알칼리용액 의한 pH의 조절이 필요하였으며, Mg2+ 이온의 영향으로 탄산화가 느리게 진행되었다. 수성탄산화 방법과 첨가제의 종류가 생성되는 탄산칼슘광물의 종류와 결정도 영향을 미치는 것으로 나타났다.
In this study, an accelerated carbonation process was applied to stabilize hazardous heavy metals of industrial solid waste incineration (ISWI) bottom ash and fly ash, and to reduce CO2 emissions. The most commonly used method to stabilize heavy metals is accelerated carbonation using a high water-to-solid ratio including oxidation and carbonation reactions as well as neutralization of the pH, dissolution, and precipitation and sorption. This process has been recognized as having a significant effect on the leaching of heavy metals in alkaline materials such as ISWI ash. The accelerated carbonation process with CO2 absorption was investigated to confirm the leaching behavior of heavy metals contained in ISWI ash including fly and bottom ash. Only the temperature of the chamber at atmospheric pressure was varied and the CO2 concentration was kept constant at 99% while the water-to-solid ratio (L/S) was set at 0.3 and 3.0 dm3/kg. In the result, the concentration of leached heavy metals and pH value decreased with increasing carbonation reaction time whereas the bottom ash showed no effect. The mechanism of heavy metal stabilization is supported by two findings during the carbonation reaction. First, the carbonation reaction is sufficient to decrease the pH and to form an insoluble heavy metal-material that contributes to a reduction of the leaching. Second, the adsorbent compound in the bottom ash controls the leaching of heavy metals; the calcite formed by the carbonation reaction has high affinity of heavy metals. In addition, approximately 5 kg/ton and 27 kg/ton CO2 were sequestrated in ISWI bottom ash and fly ash after the carbonation reaction, respectively.
So far, most studies associated with soil carbon sequestration have been focused on long term aspect. However, information regarding soil carbon sequestration in short term aspect is limited.
This study was conducted to determine changes of soil organic carbon content and stability of carbon in response to compost application rate and tillage management during rice growing season(150 days) in short term aspect. Under pot experiment condition, compost was mixed with an arable soil at rates corresponding to 0, 6, 12, and 24 Mg/ha. To determine effect of tillage on soil carbon sequestration, till and no-till treatments were set up in soils amended with application rate of 12 Mg/ha. Compost application and tillage management did not significantly affect soil organic carbon(SOC) content in soil at harvest time. Bulk density of soil was not changed significantly with compost application and tillage management. These might result from short duration of experiment. While hot water extractable organic carbon(HWEOC) content decreased with compost application, humic substances(HS) increased. Below ground biomass of rice increased with application of compost and till operation.
From the above results, continuos application of compost and reduce tillage might improve increase in soil organic carbon content and stability of carbon in long term aspect.
많은 미생물들이 수용성 망간이온(Mn2+)을 불용성인 산화망간(Mn4+) 광물로 산화 침전시키는데, 이와 같은 생물학적 산화반응은 비생물학적 산화반응보다 훨씬 빠르게 일어난다. 이처럼 미생물에 의해 생성된 바이오 산화망간 광물은 표면의 강한 흡착성과 산화환원 반응을 통해 생지구화학 순환과 환경오염물질의 생물흡수도에 큰 역할을 한다. 본 논평은 양자역학의 밀도범함수 이론에 바탕을 둔 전산모사를 이용하여 산화망간 광물 표면의 독성금속 흡착의 자세한 기작과 망간원자 빈자리의 광화학적 역할을 새롭게 밝힌 최근 연구결과를 소개한다.
본 연구는 한국과 일본의 특정 도시내 주거녹지의 미기후개선 및 CO2 농도저감 효과를 계량화하였다. 또한, 도시수목에 의한 화재방지의 효과를 검토하고, 그들 효과를 함께 증진하기 위한 녹지계획 및 관리 전략을 제시하였다. 수목 생장기간 중 평균 온도는 수목피도 12% 및 22%인 지구에서 녹지부재의 지구보다 각각 0.5℃, 1.2℃ 더 낮았다. 수목의 호당 연간 CO2, 흡수량과 O2, 생산량은 수목피도가 2배 더 높은 지구에서 3배 더 많았다. 수목피도 22% 지구의 수목은 광합성과 에너지 절약을 통해 지구 총 CO2배출량의 약 3%를 해마다 상쇄시켰고, 지구내 거주민 모두가 연간 필요로 하는 산소량의 약 10%를 생산하는 중요한 역할을 담당하였다. 흉고직경 15cm인 느티나무 한 그루의 8월 하루 증산량은 7,100kca1/h(사무실 24평용) 냉방능력을 가진 냉방기를 12시간 동안 약 3대 가동하는 효과와 같았다. 또한, 그 수목은 해마다 32리터의 휘발유 소비에 따른 CO2, 배출량을 상쇄시켰고, 한 사람이 68일간 호흡하는데 필요한 산소량을 생산하였다. 화재 방지를 비롯한 미기후개선 및 CO2 농도저감의 효과를 증진하기 위해, 수종선정 , 건물주변 식재기법, 녹지확충, 식생관리 등과 관련된 도시 주거녹지의 적정한 계획 및 관리전략을 제시하였다. 제안한 전략은 현존 단독주거지에서는 물론 새로운 주거단지를 조성하는데 유용하게 적용될 수 있을 것으로 기대한다.
The effects of Ca^2+ ion on the formation of micelle colloid of nonionic surfactants, nonylphenol-(ethylene oxide)_n [NP-(EO)n; n=11,40,100) were investigated by the iodine solubilization method. The characteristics of spectra depended on the concentration of Ca^2+ ion and the number of EO unit. Above CMC(critical micelle concentration), the intensity of the CT (chargetransfer) band by the addition of Ca^2+ ion for the NP-(EO)_11 and NP-(EO)_40 increased and then decreased and for the NP-(EO)_100 continuously increased. The increase in the intensity of CT band were attributed to the compactness of micelle in the presence of Ca^2+ ion. These phenomena mad be explained by the fact that the linear ethylene oxide (EO) chain, relatively free to assume various configuration in aqueous solution, could form a pseudo-crown ether structures capable of forming complexes with Ca^2+ ion.