Efficient and safe maritime navigation in complex and congested coastal regions requires advanced route optimization methods that surpass the limitations of traditional shortest-path algorithms. This study applies Deep Q-Network (DQN) and Proximal Policy Optimization (PPO) reinforcement learning (RL) algorithms to generate and refine optimal ship routes in East Asian waters, focusing on passages from Shanghai to Busan and Ulsan to Daesan. Operating within a grid-based representation of the marine environment and considering constraints such as restricted areas and Traffic Separation Schemes (TSS), both DQN and PPO learn policies prioritizing safety and operational efficiency. Comparative analyses with actual vessel routes demonstrate that RL-based methods yield shorter and safer paths. Among these methods, PPO outperforms DQN, providing more stable and coherent routes. Post-processing with the Douglas-Peucker (DP) algorithm further simplifies the paths for practical navigational use. The findings underscore the potential of RL in enhancing navigational safety, reducing travel distance, and advancing autonomous ship navigation technologies.
This study focuses on the effectiveness of regional business support programs funded by South Korea's Balanced National Development Special Account, one of the policies designed to address regional imbalances and promote local autonomy. Using the analytical approach including DEA (Data Envelopment Analysis) methodology, This study analyzed the efficiency of 76 star companies in the Jeonbuk region based on their performance from 2018 to 2023. This study was designed to improve previous studies limitations, which only analyzed simple input-output efficiency in the short term, by using six years of mid-term data to comprehensively evaluate input variables in both R&D and Non-R&D sectors. The main purpose of this study is to analyze the effectiveness of the expiring Star Company Development Program by evaluating efficiency of supported company groups using DEA and to propose support models and policy suggestions for upcoming regional specialized industries support program by identifying the features of both optimal and inefficiency models. For this, employments along with financial indicators such as sales revenue, operating profit, and total assets were set as output variables, with R&D and non-R&D support amounts were set as input variables for analysis. According to the results, the optimal efficiency model group has strong intellectual property acquisition capabilities, and continuous R&D investment. It shows that continuous innovation activities are a key factor for improving the effectiveness of support. This study found that, from a mid․long term perspective, policy support programs should be customized by unique characteristics of each industry field, Based on this, it was suggested that upcoming regional specialized industry support programs in the Jeonbuk region should include policy planning and support program design to complement the weaknesses of each industry field.
As the Fourth Industrial Revolution advances, smart factories have become a new manufacturing paradigm, integrating technologies such as Information and Communication Technology (ICT), the Internet of Things (IoT), Artificial Intelligence (AI), and big data analytics to overcome traditional manufacturing limitations and enhance global competitiveness. This study offers a comprehensive approach by evaluating both technological and economic performance of smart factory Research and Development (R&D) projects, addressing gaps in previous studies that focused narrowly on either aspect. The research combines Latent Dirichlet Allocation (LDA) topic modeling and Data Envelopment Analysis (DEA) to quantitatively compare the efficiency of various topics. This integrated approach not only identifies key research themes but also evaluates how effectively resources are utilized within each theme, supporting strategic decision-making for optimal resource allocation. Additionally, non-parametric statistical tests are applied to detect performance differences between topics, providing insights into areas of comparative advantage. Unlike traditional DEA methods, which face limitations in generalizing results, this study offers a more nuanced analysis by benchmarking efficiency across thematic areas. The findings highlight the superior performance of projects incorporating AI, IoT, and big data, as well as those led by the Ministry of Trade, Industry, and Energy (MOTIE) and small and medium-sized enterprises (SMEs). The regional analysis reveals significant contributions from non-metropolitan areas, emphasizing the need for balanced development. This research provides policymakers and industry leaders with strategic insights, guiding the efficient allocation of R&D resources and fostering the development of smart factories aligned with global trends and national goals.
이 연구의 목적은 염전에서 폐기되는 간수로 만든 담체의 비소 제거 특성을 연구한 것이다. 간수담체의 물리적 특성은 800 ~ 900℃에서 소성된 것을 사용하여 검토하였다. 비표면적과 흡수율은 각각 16.670 m2/g, 42.3%이었고 압축강도와 총 기공부피는 각각 28.3 kgf/cm2, 0.00818 cm2/g이었다. 간수담체의 화학적 조성은 SiO2가 55.3%이었고 특히, MgO가 19.2%로 매우 높은 농도로 존재하였다. 이런 결 과는 마그네슘 이온을 고농도로 포함하고 있는 간수의 영향을 받은 것으로 판단된다. 또한, X-Ray 회절 분석 결과, 간수담체는 Forsterite(Mg2SiO4)와 결정구조가 유사한 것으로 밝혀졌다. 간수담체는 제올라이트와 다양한 간수 용량으로 제조되었고 20% 간수로 만든 간수담체에서 비소 제거 효율이 최대화되었다. 또한, 수용액 중 간수담체의 용량이 40%일 때 90% 이상의 비소 제거 효율을 나타냈다. 간 수담체의 비소 제거 반응은 매우 빠르게 발생하였고 대부분의 비소 제거 반응이 수 시간 내에 끝났다. 회분식 실험을 통해서 간수담체의 비소 제거율에 미치는 pH 영향을 검토한 결과, 간수담체는 넓은 pH 범위(pH 5 ~ 10)에서도 높은 비소 제거 효율을 나타내었다.
The purpose of this study is to estimate the production function of the oliver flounder (Paralichthys olivaceus) aquaculture industry, analyze its efficiency, and provide implications for sustainable aquaculture. For this purpose, the SFA model was utilized. The results of this study are as follows. First, the coefficient values of labor wages and farm area are higher than other inputs. This suggests that the Korean oliver flounder aquaculture industry is labor-intensive. Second, disease management is highly influenced by management efficiency. The more frequently farms are disinfected and culled, the higher the management efficiency with culling having a greater impact on management efficiency. Finally, the cost inputs of high and low-efficiency fish farms were analyzed, and it is recommended that wages, electricity, drugs, and oxygen should be kept at a reasonable level rather than excessive. However, the higher the inputs for mortality removal and disease management, the higher the management efficiency. In other words, improving the farm environment is the most important to achieve sustainability and management efficiency of Korean oliver flounder farming.
PURPOSES : This paper presents a foundational study aimed at strengthening the competitiveness of future overseas construction engineering projects, efficiently guiding investment decisions for the government or private sectors and establishing policy suggestions for areas that need to be supplemented and linked. METHODS : The data envelopment analysis (DEA) model was used to measure the operational efficiency for individual types of work. The DEA model for measuring efficiency uses the representative Charnes, Cooper, and Rhode (CCR) and Banker, Charnes, and Cooper (BCC) models. RESULTS : By using statistics of overseas construction projects and conducting DEA, it was revealed that construction management was most needed in the energy facility sector of overseas construction projects. CONCLUSIONS : Although the capabilities of our country's companies are excellent, it was evident that the energy and industrial facilities sectors, which need to be supplemented to enhance their competitiveness, require policy support that incorporates construction management (CM). Consequently, it was confirmed that the construction management sector needs investment that should continue to be activated in the future. Additional research is needed that considers variables and environments related to overseas construction projects’ on-site conditions. To this end, the government should continue to promote research and government investment linked to CM to make progress in overseas construction sectors.
우리나라에서 공용중인 시설물은 총 172,111개로 집계되고 있으며, 그 중 교량은 34,199개로 사회 기반시설 중 가장 많은 비중을 차지한다. 이러한 교량은 공용하중, 온도, 습도 등에 의해 거더간 신축 량이 발생하게 되고 신축량 발생으로 인한 유간거리에 대해 차량의 통행 안정성 및 주행성 확보를 위 한 신축이음장치를 설치하게 된다. 신축이음장치를 설치하여 차량의 통행 안정성 및 주행성을 확보할 수 있지만 누수 및 퇴적물 낙하 등을 직접적으로 방지하지 못하여 고무지수재를 별도로 설치하게 된 다. 하지만 이러한 고무지수재는 다양한 원인에 의해 쉽게 손상이 발생한다. 손상된 고무지수재를 통 해 거더의 부식, 교량하부 인명사고 등 다양한 2차 피해가 발생할 수 있다. 피해방지를 위한 교량의 유지관리를 지속적으로 수행하고 있지만 고무지수재 특성상 지속적인 교체가 불가피한 실정이다. 따라 서 본 연구에서는 기존 신축이음장치에 활용되는 고무지수재의 문제점을 해결하기 위하여 초탄성 형 상기억합금을 활용한 새로운 지수재 개발 연구를 수행하였다. 이에 대해 초탄성 형상기억합금 지수재 와 고무지수재에 대한 유한요소해석을 수행하고 비교 및 분석하였으며, 하중 제거 후 원형으로 복원되 는 효과를 통해 지속 사용 가능한 지수재 연구를 검증하였다.
최근 노인 인구가 증가함에 따라, 이들의 삶의 질에 대한 사회적 관심도가 높아지고 있으며, 노인들의 건강하고 활기찬 노후를 고려하는 활동적 노후 및 고령친화도시의 개념이 주목받고 있다. 이러한 상황에서 많은 지자체는 노인들이 지역 사회에서 여생을 의미 있게 보낼 수 있도록 다양한 노인여가복지 서비스를 제공하기 위해 노력하고 있다. 그러나 실질적인 노인 수요에 부합하는 서비스 공급이 이루어지지 못하고 있으며, 지역별로 노인여가복지 서비스의 공간적 격차가 발생하고 있는 실정이다. 이는 노인여가복지 입지와 관련하여 체계적인 법적 기준이 부재하기 때문이다. 이에 본 연구는 서울시의 노인여가복지 시설에 대한 수요와 공급의 공간적 불일치성을 탐색하고, 공간 효율성과 형평성을 고려한 노인복지센터의 최적 입지 대안을 제시하고 있다. 연구 결과, 여러 입지 시나리오에 따라 서울시 노인복지센터의 공간적 접근성을 향상시킬 수 있는 다양한 최적 입지 대안들을 제시할 수 있었으며, 향후 노인복지 서비스 공급과 관련한 계획 및 정책에 있어 중요한 기초 자료로 활용될 수 있을 것으로 기대된다
Selenium (Se), a vital trace element found naturally, plays a pivotal role for human being in low concentrations. Notably, within the spectrum of essential elements, Se possesses the most restricted range between the dietary deficiency (< 40 μg day-1) and the acute toxicity (> 400 μg day-1). Therefore, it is of paramount importance to maintain bioavailable Se levels within permissible limits in our drinking water sources. Among the various Se species, inorganic variants such as selenite (SeO3 2-) and selenate (SeO4 2-) are highly water-soluble, with SeO3 2- being notably more toxic than SeO4 2-. Consequently, the primary focus lies in effectively sequestering SeO3 2- from aquatic environments. Numerous methods have been investigated for SeO3 2- adsorption, including the use of metal oxides and carbon-based materials. Especially, iron oxides have garnered extensive attention due to their water stability and environmentally friendly properties. Nevertheless, their limited surface area and insufficient adsorption sites impose constraints on their efficacy as materials for SeO3 2- removal. Recently, metal–organic frameworks (MOFs), composed of metal centers bridged by organic linkers have increasingly focused as promising adsorbents for SeO3 2- removal, offering significant advantages such as large surface areas, high porosities, and structural versatility. Furthermore, there is a growing interest in defective MOFs, where intentional defects are introduced into the MOF structure. This deliberate introduction of defects aims to enhance the adsorption capacity by increasing the number of available adsorption sites. In this context, herein, we present the Fe-BTC (BTC = 1,3,5-benzenetricarboxylic acid) synthesized via a post-synthetic metal-ion metathesis (PSMM) approach, which is one of the defect engineering methods applied to metal sites. We employ the well-established MOF, HKUST-1, known for its substantial surface area, as the pristine MOF. While the pristine MOF has a crystalline phase, during the PSMM process, Fe-BTC is transformed into an amorphous phase by allowing the introduction of numerous metal defect sites. These introduced metal defect sites serve as Lewis acidic sites, enhancing the adsorption capability for selenite. Furthermore, despite its amorphous nature, Fe-BTC exhibits a substantial surface area and porosity comparable to that of the crystalline pristine MOF. Consequently, Fe-BTC, distinguished by its numerous adsorption sites and its high porosity, demonstrates a remarkable capacity for selenite adsorption.
This study was carried out to develop a system to reduce ultrafine dust using hygroscopic materials such as glycerin and propylene glycol. Prior to the development of an ultrafine dust reduction system, the moisture condensation efficiency of glycerin and propylene glycol was investigated based on relative humidity (RH). The results showed that when no substances (glycerin and propylene glycol) were added to a tedlar bag, the relative humidity and temperature remained constant. The moisture condensation efficiency of glycerin was 60%, and the time it took to reach 50% of the initial relative humidity was about 40minutes. In the case of propylene glycol, the moisture condensation efficiency was 75%, and the time it took to reach 50% of the initial relative humidity was about 10 minutes. When glycerin and propylene glycol mixture was added, the moisture condensation efficiency was 68% and it took 20 minutes to reach 50% of the initial relative humidity. These results suggest that hygroscopic materials such as glycerin and propylene glycol can actually condense moisture in the atmosphere. In addition, considering actual atmospheric conditions, the relative humidity was set to 60% and 40% or less, and the moisture condensation efficiency was measured. The results showed that the mixture of glycerin and propylene glycol yielded the highest condensation efficiencies, at 69% and 62%, respectively. Therefore, it is preferable to use a mixture of glycerin and propylene glycol to condense moisture in the range of relative humidity in the actual atmosphere.
PURPOSES : This study aims to analyze the efficiency of the safety and management of private highways.
METHODS : Variables were selected based on the data and performance related to the safety of 18 private highways. The appropriateness of operations management was reviewed using Data Envelopment Analysis (DEA) analysis. Items with a scope for improvement were reviewed and adjustment measures were presented.
RESULTS : To increase safety management efficiency, the degree of reduction in personnel and operating expenses was presented based on the relative efficiency group.
CONCLUSIONS : It is necessary to adjust the appropriate management organization and operating costs according to the characteristics of each route. Moreover, the limitations of the study and possible improvements were presented.
Most of the white fumes from the tenter process of a textile plant in an industrial complex are generated by water vapor and oil mist. While general water vapor disappears when the humidity is lowered, the white fume generated in the tenter process does not disappear and is continuously maintained, resulting in environmental problems and complaints. Efforts to reduce white fume are being conducted, but it is vitally important to develop a performance index that quantitatively calculates and deduces the degree by which white fume has been reduced, so that a tangible and visible result can be obtained in the performance evaluation of prevention facilities. In this study, the removal efficiency or performance of a general wet scrubber and a wet electrostatic precipitator (electrical fume collector, EFC) installed in the actual textile tenter process was analyzed by the light scattering method that can measure the concentration of particles up to a high level. The white fume removal efficiency of the EFC was 92%, much higher than the 17% removal efficiency of the general scrubber. In addition, the EFC was more effective in removing toluene, 1,1'- [oxybis(methylene)]bis- Benzene, and benzothiazole, which are the major substances generated from the textile tenter process, as well as complex odors. From these results, it was found that the light scattering method is one of the useful tools to evaluate the performance of white fume prevention facilities in the industrial field in terms of satisfying the urgent need for measurement and the ability to obtain a clear and precise result on site. This approach is meaningful in that real-time quantification is applicable more intuitively than the gravimetric method in assessing the fume removal performance as it can be observed with the naked eye.
In this study, a two-stage electrostatic precipitator (ESP) was developed using a novel automatic dry cleaning device to reduce the ultrafine particles in subway stations. Collection efficiency was evaluated with a pilot scale ESP (1.2m× 1.2m) and the scale of the test duct was half of the subway air handling unit. The maximum collection efficiency for 0.3 μm particles was 96.9%. In addition, we studied a method of automatic dry cleaning for maintenance of the ESP. The cleaning efficiency was analyzed according to the cleaning flow rate for each particle loading amount to achieve a recovery rate over 90%. In addition, we derived the equation to estimate the reduction in collection efficiency according to the particle loading amount. It was confirmed that the performance of the contaminated ESP was restored to the initial state by the automatic dry cleaning in this study and that the electrical energy consumption was 5 times lower compared to utilizing conventional water cleaning.
The Korean Air-Force aircraft maintenance depot paints the exterior of various aircraft, including high-tech fighters. Aircraft exterior painting is a maintenance process for long-term life management by preventing damage to the aircraft surface due to corrosion. The de-painting process is essential to ensure the quality of aircraft exterior paints. However, because the Korean Air-Force’s de-painting process is currently done with sanding or Plastic Media Blasting (PMB) method, it is exposed to harmful dust and harmful compounds and consumes a lot of manpower. This study compares the de-painting process currently applied by the ROK Air-Force and the more improved process of the US Air Force, and performs economic analysis for the introduction of advanced equipment. It aims to provide information that can determine the optimal time to introduce new facilities through Cost-Volume-Profit (CVP) analysis. As a result of the analysis, it was confirmed that the sanding method had the most economical efficiency up to 2 units per year, the PMB method from 3 to 21 units, and the laser method from 22 units or more. In addition, in a situation where the amount of de-painting work is expected to increase significantly due to the increase in fighters in future, BEP analysis was conducted on the expansion of the existing PMB method and the introduction of a new laser method. As a result of the analysis, it was confirmed that it is more economical to introduce the laser method when the amount of work exceeds the PMB work capacity(18 units per year). The paper would helpful to improve the productivity and quality of the Korean Air Force Aircraft maintenance depot through timely changes of facilities in the workplace in preparation for expansion.