최근 항시적 광역 모니터링이 가능한 위성원격탐사 기술에 의해 산불감시의 효율성이 증대될 것으로 기대되고 있는 가운데, 미국의 Terra, Aqua, GOES (Geostationary Operational Environmental Satellite), 유럽연합의 Meteosat, 그리고 우리나라의천리안위성 및 후속위성도 산불정보의 실시간 제공을 목표로 하고 있다. 본 연구에서는 이러한 위성기반 산불정보를 대민서비스하기 위한 방법의 일환으로 스마트폰 앱을 구현하여, 북한지역을 포함한 한반도 전역의 위성자료로부터 추출한 산불발생여부, 산불탐지 신뢰도, 산불의 방사강도 등의 정보를 DBMS (Database Management System)에서 관리하고, 안드로이드와 iOS 스마트폰을통해 제공하는 서비스의 원형을 개발하였다. 공통적 핵심기능은 HTML5 (HyperText Markup Language 5) 웹페이지로 구성함으로써 상이한 OS (Operating System)의 네이티브 앱과 결합하는 하이브리드 방식을 통해 소스코드의 재사용성과 시스템 확장성을 추구하였으며, 일자별 산불조회, 최근 산불조회, 주변 산불조회 등의 기능을 포함하도록 하였다. 현재는 위성기반 산불탐지 자료가 실시간 제공되지 않아 산불발생의 이력정보를 서비스하도록 구성하였지만, 2010년대 후반 우리나라 기상위성의 산불탐지 자료가 실시간으로 제공될 것이므로, 정부 3.0의 정보공개 흐름과 함께 국민 모두에게 필요한 실시간 산불정보 조회가 가능해질 것으로 예상된다. 본 연구는 위성기반의 실시간 산불정보 앱 개발을 위한 출발점으로서 의의를 가지며, 향후 산불정보 앱은 SNS (SocialNetworking Service) 기반의 빅데이터 마이닝 기술과 연동하는 통합 솔루션으로 구성되어야 그 활용성이 보다 더 제고될 것이다.
This study suggests new approach to identify core technologies through patent analysis. Specially, the approach applied data mining technique and multi-criteria decision making method to the co-classification information of registered patents. First, technological interrelationship matrices of intensity, relatedness, and cross-impact perspectives are constructed with support, lift and confidence values calculated by conducting an association rule mining on the co-classification information of patent data. Second, the analytic network process is applied to the constructed technological interrelationship matrices in order to produce the importance values of technologies from each perspective. Finally, data envelopment analysis is employed to the derived importance values in order to identify priorities of technologies, putting three perspectives together. It is expected that suggested approach could help technology planners to formulate strategy and policy for technological innovation.
본 논문에서는 주성분 회귀법과 부분최소자승 회귀법을 비교하여 보여준다. 이 비교의 목적은 선형형태를 보유한 근적외선 분광 데이터의 분석에 사용할 수 있는 적합한 예측 방법을 찾기 위해서이다. 두 가지 데이터 마이닝 방법 론인 주성분 회귀법과 부분최소자승 회귀법이 비교되어 질 것이다. 본 논문에서는 부분최소자승 회귀법은 주성분 회귀법과 비교했을 때 약간 나은 예측능력을 가진 결과를 보여준다. 주성분 회귀법에서 50개의 주성분이 모델을 생 성하기 위해서 사용지만 부분최소자승 회귀법에서는 12개의 잠재요소가 사용되었다. 평균제곱오차가 예측능력을 측 정하는 도구로 사용되었다. 본 논문의 근적외선 분광데이터 분석에 따르면 부분최소자승회귀법이 선형경향을 가진 데이터의 예측에 가장 적합한 모델로 판명되었다.
Globally, smart phones have been rapidly distributed, which has led to changes in people's life cycle. Most people who are under 60 are supposed to use smart phones. Additionally, as the ratio of people who are interested in physical exercise is increasing, some applications for smart phones can manage dividual's exercise with the web servers. However, most of them can only check how much individual works out and cannot compare other's body type and life environment. Moreover, users cannot share their own data with others. This paper proposed the system which can resolve those kinds of problems through data mining techniques. The suggested model will have ability to figure out the relation between body type and the amount of exercise, find out if his work is proper from the result of classification and can pick out the features which is common to people who have similar body type and the amount of workout by applying data mining techiques. This model also will be able to recommend the proper amount of workout to each individual in order that they keep good health state efficiently.
소셜 미디어의 급속한 발달로 인해 사용자가 생성한 텍스트 데이터가 급증하고 있다. 오피니언 마이닝에서는 이러한 사용자의 텍스트를 분석하여 사용자의 의견을 추출하고 있다. 특히 오피니언 마이닝의 세부 분야인 정서분석에서는 텍스트에서 사용자의 정서를 추출하는 것이 주된 목적인데, 이를 위해서는 정서 단어 목록 구축이 필수적이다. 본 논문에서는 소셜 미디어의 정서 분석을 위해서 대표적인 소셜 미디어인 페이스북 텍스트를 사용하여 정서 단어 목록을 구축하였다. 페이스북 텍스트로부터 데이터를 수집한 후 정서 단어를 선별하고 설문을 통하여 정서가와 활성화 차원을 측정하였다. 그 결과 정서가, 활성화 차원을 포함한 267개 정서 단어 목록을 구축하였다.
최근에 사용자에 의한 대량의 텍스트 데이터가 발생하면서 사용자의 정보, 의견 등을 분석하는 오피니언 마이닝이 중요하게 부각되고 있다. 오피니언 마이닝 중 특히 정서 분석은 제품, 사회적 이슈, 정치인에 대한 호감 등에 대한 개인적 의견이나 정서를 분석하여 긍정, 부정이나 행복, 슬픔 등의 정서를 분석하는 연구 분야이다. 정서 분석을 위해서 정서 차원 이론의 정서가와 각성 차원의 2차원 공간을 사용하고, 이 공간에서 정서가 분포하는 영역을 설정하여 매핑하는 방법을 사용한다. 그러나 기존에는 정서의 분포 영역을 임의로 설정하는 문제가 있었다. 본 논문에서는 이 문제를 해결하기 위해, 한국어 정서 단어 목록을 사용해 사용자 설문을 실시하여 2차원 상에 12개 정서의 분포를 구성하였다. 또한 2차원 상의 특정 정서 상태가 여러 개의 정서에 중첩되는 경우, 정서에 소속될 확률을 사용한 룰렛휠 방법을 사용하여 하나의 정서를 선택하는 방법을 제안하였다. 제안한 방법을 사용하여 텍스트에서 정서 단어를 추출하여 텍스트를 정서로 분류할 수 있다.
Data mining is the process of finding and analyzing data from a big database and summarizing it into useful information for a decision-making. A variety of data mining techniques have been being used for wide range of industries. One application of those is especially so for gathering meaningful information from process data in manufacturing factories for quality improvement. The purpose of this paper is to provide a methodology to improve manufacturing quality of fuel tanks which are auto-parts. The methodology is to analyse influential attributes and establish a model for optimal manufacturing condition of fuel tanks to improve the quality using decision tree, association rule, and feature selection.
데이터마이닝의 사전 단계에서 데이터의 차원(Dimensionality)을 줄이기 위한 단계로서 많은 요소선택(Feature Selection)방법들이 개발되었다. 이 방법은 결과를 예측하거나 데이터를 설명하고자 할 때 어떤 요소들이 관련이 있는지를 결정하는 과정을 포함한다. 또한 이 방법은 데이터의 크기에 대한 확장성(Scalability)를 향상시키며 학습 모델을 더욱 이해하기 쉽도록 줄 수 있다. 이 논문에서는 NP(Nested Partition)
최근 사용자 중심의 디자인과 형태개발 및 분석은 성공적 디자인의 중요한 방법론으로 부각되고 있다. 사용자의 형태분석을 위해서는 기존 방법의 통합적인 접근과 더불어 디자이너의 전문도구로서 고찰되고 개발되는 것이 요구된다. 특히 기존의 분석도구들은 디자이너의 요구에 적합할 수 있도록 분석결과의 시각화과 명확한 방향성 제시가 요구되며, 사용자 감성반응을 형태분석에 응용할 수 있는 다각적인 방법의 모색이 요구된다. 또한 분석도구로서의 전문성을 강화하고 디자이너가 손쉽게 사용할 수 있도록 디자이너 친화적 인터페이스의 적용이 필요하다. 본 연구는 사용자 감성반응을 기존의 형태분석 도구에 활용하기 위한 방법과 체계를 분석하며, 이를 통하여 사용자의 감성적 반응에 기초한 형태분석 도구를 제시하였다. 구체적인 형태분석의 도구는 통합적 관리, 변수설정, 분석결과의 시각화, 데이터마이닝을 통한 심층 분석, 사용자 중심 분석결과의 연관성 강화의 5가지 컨셉으로 제시되었으며, 프로젝트 관리, 분석프레임 설정, 데이터 입출력, 기초 분석, 심층분석의 5가지 모듈로서 개발되었다. 제안된 도구는 모바일 폰의 사례조사를 통하여 그 효용성을 알아보았으며, 도구 활용의 사용성과 형태분석의 타당성이 검증되었다.
대작게임의 범용화에 따라, 게임마케팅 및 게임평가에 대한 사용자 피드백들이 체계화된 데이터베이스에 저장이되고, 더불어 데이터베이스의 규모는 점점 커지고 있다. 데이터 마이닝은 방대한 자료의 분석을 통해, 그 속에 숨어있는 의미를 찾는 과정이다. 본 논문에서는 게임마케팅 활용시나리오에 따른 사용자지향 데이터 마이닝 도구인 XM-Tool/Miner의 개발을 대상으로 하고 있다. 개발된 XM-Tool/Miner은 문제 중심적 마이닝 도구를 목표로 하였으며, 대표적인 마이닝 알고리즘을 적용하였고, 또한 사용의 편이성에 초점을 맞추었다. 더 나아가 데이터 마이닝 기법뿐만 아니라 데이터의 샘플링과 성능향상을 통하여 방대한 데이터로부터 다양한 지식탐사가 가능해지고, 발견된 규칙 또는 지식의 유용성 측정을 통하여 대상마케팅 특성에 따라 효과적으로 반영되며 의사결정 및 CRM마케팅, 동향분석 및 예측 등에 유용한 정보를 추출하는 도구로 사용할 수 있다.
A company establishes a sale strategy through the inventory to set the purchasing requisite of the customer in a global company environment. And a sale company can become the reason of a sale opportunity loss because of a customer satisfaction rate if i
심장의 활동을 기록한 심전도는 심장의 상태에 대한 가치 있는 임상 정보를 제공한다. 지금까지 심전도를 이용한 심장 질환 진단 알고리즘에 대한 많은 연구가 진행되어 왔으나, 심장 질환에 대한 국내 진단 결과의 부정확성 때문에 외국의 진단 알고리즘을 사용하고 있다. 이 논문에서는 원시 심전도 데이터로부터 심장 질환 진단의 파라미터인 ST-segment 추출 방법을 제안한다. ST-segment는 관상동맥 질환 예측에 활용되므로 데이터마이닝의 분류기법을 적용하여 질환을 예측한다. 또한 연관규칙 마이닝을 통해 환자들의 임상 데이터로부터 심장 질환자들의 임상적 특징을 예측한다.
The authors used association rules and patterns in sequential of data mining in order to raise the efficiency of engineering changes. The association rule can reduce the number of engineering changes since it can estimate the parts to be changed. The patterns in sequential can perform engineering changes effectively by estimating the parts to be changed from sequence estimation. According to this result, unnecessary engineering changes are eliminated and the number of engineering changes decrease. This method can be used for improving design quality and productivity in company managing engineering changes and related information.
According to the automated manufacturing processes followed by the development of computer manufacturing technologies, products or quality characteristics produced on the processes have measured and recorded automatically. Much amount of data daily prod
Nowadays most colleges are confronting with a serious problem because many students have left their majors at the colleges. In order to make a countermeasure for reducing major separation rate, many universities are trying to find a proper solution. As a similar endeavor, the objective of this paper Is to find a predicting model of students leaving their majors. The sample for this study was chosen from a university in Kangwon-Do during seven years(2000.3.1 ~ 2006. 6.30). In this study, the ratio of training sample versus testing sample among partition data was controlled as 50% : 50% for a validation test of data division. Also, this study provides values about accuracy, sensitivity, specificity about three kinds of algorithms including CHAID, CART and C4.5. In addition, ROC chart and gains chart were used for classification of students leaving their majors. The analysis results were very informative since those enable us to know the most important factors such as semester taking a course, grade on cultural subjects, scholarship, grade on majors, and total completion of courses which can affect students leaving their majors.
의사결정나무 알고리즘은 데이터마이닝 기법중 하나인데 관심이 되는 데이터들에 대하여 분류 및 예측을 가능하게 해준다. 이 기법은 데이터 형태의 특성을 분석할 수 있고 산업재해 형태의 차이점을 찾아내는데 사용될 수 있다. 본 연구에서는 산업재해 데이터의 특성을 파악하고자 C4.5 알고리즘을 사용하였다. 본 연구에서 분석을 위하여 사용된 데이터는 강원도에서 발생한 2년 동안의 산업재해 관련 데이터로서 연구에 적용된 데이터의 수는 19,909개로 구성되어 있다