The group formation problem of the machine and part is a critical issue in the planning stage of cellular manufacturing systems. The machine-part grouping with alternative process plans means to form machine-part groupings in which a part may be processed not only by a specific process but by many alternative processes. For this problem, this study presents an algorithm based on self organizing neural networks, so called SOM (Self Organizing feature Map). The SOM, a special type of neural networks is an intelligent tool for grouping machines and parts in group formation problem of the machine and part. SOM can learn from complex, multi-dimensional data and transform them into visually decipherable clusters. In the proposed algorithm, output layer in SOM network had been set as one-dimensional structure and the number of output node has been set sufficiently large in order to spread out the input vectors in the order of similarity. In the first stage of the proposed algorithm, SOM has been applied twice to form an initial machine-process group. In the second stage, grouping efficacy is considered to transform the initial machine-process group into a final machine-process group and a final machine-part group. The proposed algorithm was tested on well-known machine-part grouping problems with alternative process plans. The results of this computational study demonstrate the superiority of the proposed algorithm. The proposed algorithm can be easily applied to the group formation problem compared to other meta-heuristic based algorithms. In addition, it can be used to solve large-scale group formation problems.
포장의 공용수명은 교통량, 기후, 포장강도, 차량하중 등 다양한 인자들의 영향을 받고 있으며 특히 교 통하중 특성과 기후, 포장의 상・하부구조 등은 포장의 수명에 큰 영향을 주는 것으로 알려져 있다. 하지 만 측정에 따른 오차, 조사구간의 불일치등에 따른 다양한 잠재오차들로 인해 다양한 인자들을 고려한 공 용수명의 예측에 관한 연구가 어려운 실정이다. 따라서 본 연구에서는 다중회귀분석기법을 활용하여 포장 의 수명에 영향을 미치는 주요인자를 선정하고 인공지능 분석기법 중의 하나인 신경망 분석기법(Neural Network Analysis)을 활용하여 아스팔트포장의 공용수명을 예측하고 이를 다중회귀분석의 분석결과 비 교・분석하였다.
먼저, 최근 3년간의 일반국도를 대상으로 조사가 이루어진 아스팔트포장의 수명 데이터를 기준으로 해 당 구간의 누적 교통량(AADT: Average Annual Daily Traffic), 누적 환산축하중(ESAL: Equivalent Single Axle Loads), 포장상부구조(보수층, 표층, 기층), 포장하부구조(보조기층, 동상방지층), 포장강도, 유지보수 지역(관리청)등의 다양한 요인들을 고려한 다중회귀분석 결과 누적교통량, 포장상부구조, 포장하 부구조, 유지보수 지역(관리청)이 유효한 변수로 선정되었다.
본 연구에서 인공신경망분석을 위해 활용한 다층 퍼셉트론(Multi layer Perceptron)기법은 입력층과 출력층 사이에 하나 이상의 은닉층(Hidden Layer)이 존재하게 되며 분석 알고리즘으로는 역전파 알고리 즘(Backpropagation algorithm)을 활용하였다. 분석을 위해 입력층에는 독립변수에 해당되는 누적교통 량, 포장상·하부구조, 유지보수지역의 4가지 변수를 입력하였으며 출력층에는 포장의 공용수명을 입력 하였다. 분석데이터는 70%를 학습, 15%를 검정, 15%를 테스트를 위해 활용하였으며 나아가 은닉층 신경 망(hidden neuron) 개수의 변화를 고려한 시나리오 분석을 수행하였다. 분석결과, 다중회귀분석에 비해 인공신경망 분석기법의 예측력이 뛰어난 것으로 나타났으며 은닉층 신경망(hidden neuron)의 개수가 과 대해지는 경우에는 인공신경망 자체의 예측력이 감소하는 것으로 나타났다.
Developing two process models to simulate wastewater treatment process is needed to draw a comparison between measured BOD data and estimated process model data: a mathematical model based on the process mass-balance and an ANN (artificial neural network) model. Those two types of simulator can fit well in terms of effluent BOD data, which models are formulated based on the distinctive five parameters: influent flow rate, effluent flow rate, influent BOD concentration, biomass concentration, and returned sludge percentage. The structuralized mass-balance model and ANN modeI with seasonal periods can estimate data set more precisely, and changing optimization algorithm for the penalty could be a useful option to tune up the process behavior estimations. An complex model such as ANN model coupled with mass-balance equation will be required to simulate process dynamics more accurately.
Evolutionary computation is a powerful tool for developing computer games. Back-propagation neural network(BPNN) was proved to be a universal approximator and genetic algorithm(GA) a global searcher. The game of Tic-Tac-Toe, also known as Naughts and Crosses, is often used as a test bed for testing new AI algorithms. We tried to recognize the strategic fitness of a finished Tic-Tac-Toe game when the parameters, such as a sequence of moves, its game depth and result, are provided. To implement this, we've constructed an evolutionary model using GA with back-propagation NNs(GANN). The experimental results revealed that GANN, in the very long training time, converges very slowly; however, performance of recognizing the strategic fitness does not meet we expected and, further, increase of the population size does not significantly contribute to the performance of GANN.
본 연구는 기존의 회귀분석과는 달리 시계열 분석과 인공신경망 모형을 이용하여 장래 해상교통량을 예측하였다. 특히, 시계열 분석을 통한 예측값을 인공신경망 모형에 추가 입력변수로 적용하여 장래 해상교통량 예측을 제고하고자 하였다. 본 연구는 인천항의 1996년부터 2013년까지 월별 관측값을 대상으로 하였다. 모형의 예측력 검증을 위해 1996년부터 2012년까지 관측값을 대상으로 구축한 모형으로부터 2013년을 예측하여 실제 관측값과의 비교로 적합한 모형을 판별하였다. 인천항의 2015년 장래 해상교통량은 매월 평균 교통량보다 5월과 11월에 각 5.9 %, 4.5 % 많았으며, 1월과 8월은 매월 평균 교통량보다 각 8.6 %, 4.7 % 적은 것으로 예측되었다. 따라서 인천항은 계절에 따른 월별 교통량의 차이를 확인할 수 있다. 본 연구는 해상교통 현장관측 조사시 계절에 따른 교통량의 특성을 반영할 수 있는 기초 자료로 활용될 수 있다.
의료영상에서 잡음제거는 의료영상 분야에서의 중요한 도전 과제들 중의 하나이다. 최상의 진단 결과를 얻기 위해서는 잡음과 아티펙트가 제거되고, 선명하며 깨끗한 화질의 의료영상이 필요하다. CT는 의료영상에서 중요하고 가장 보편적인 모달리티이다. CT 영상에서 주요 잡음은 양자화 잡음이다. 본 논문에서는 CT 영상에서 잡음 제거를 위한 하이브리드 필터를 제안하였다. 제안된 하이브리드 필터는 바이래터럴 필터, 신경망 윤곽선 검출기, 다층 신경망 등으로 구성되어 있다. 다층 신경망은 여러 정보들을 결합하여 개선된 출력 영상을 만들기 위한 융합 연산자로서 이용되었다. RMSE, ISNR, MSR과 CNR과 같은 화질 평가 척도가 잡음 개선의 성능 평가를 위해 사용되었다. 또한, 시각적으로도 제안된 필터가 다른 필터들에 비해 우수한 결과를 보였다. 이와같은 화질 평가 척도에 의해 본 논문에서 제안된 필터는 바이래터럴 필터나 가이드 필터보다 우수하였다. 특히, 심한 잡음이 있는 상황에서 제안된 필터는 우수한 결과를 보였다.
생물 종 다양성 및 보존에 대한 필요성은 곤충과 같은 생물 개체의 정확하고 효율적인 인식 방법에 관심을 불러 일으켰다. 특히 스마트 폰과 같은 디지털 정보가전의 발달과 보급으로 인해 영상 매체를 이용한 곤충 종의 자동인식에 대해 많은 연구가 이루어지고 있다. 본 논문은 나비 영상 인식을 위해 가지 길이 유사성 엔트로피(Branch Length Similarity Entropy)를 이용한 특징 추출 방법을 제안한다. 제안한 특징 추출 방법은 나비의 윤곽으로부터 높은 곡률을 가진 특징점들을 추출한 다음 이들 사이를 네트워크로 구성하고 특징점 간의 길이 분포를 엔트로피로 표현한 것이다. 제안한 특징 추출 방법의 성능을 평가하고자 15종의 나비 영상을 대상으로 지도학습 기반 기계학습 방법인 베이지안 분류기, 인공 신경망 및 서포트 벡터 머신을 이용해 기존에 제시된 퓨리에 기술자 및 웨이블릿 기술자와 비교하였다.
가상 환경 또는 실세계에서 지능적인 NPC를 위한 연구가 하드웨어나 소프트웨어 분야에서 활발히 진행되고 있다. 하드웨어 분야로는 로봇 시스템이 주를 이루고 있으며, 이는 물리적인 제약점과 노이즈의 문제 해결에 초점을 맞추고 있다는 점에서 단순 소프트웨어 분야와는 차이점이 있다. 그러나 공통적인 목표는 사람과 같은 환경에서 사람과 같이 행동하는 지능형 NPC 기술 개발이다. 본 논문은 최근 기존 연구 중에서 소프트웨어 분야와 아키텍쳐 설계를 통해 지능적인 NPC를 연구한 사례를 중점으로 조사한다. 사람과 같은 행동 결정을 유도하는 NPC에는 신경망, 유전자 알고리즘, 사례기반 추론, 학습과 같은 여러 분야에 연구가 진행되고 있다. 다양한 인공지능 알고리즘 중에서 현재 환경과 자신의 상태를 고려하여 가장 적합한 행동 결정을 유도하는 계획 기법을 기반으로 하는 연구를 조사한다. 이러한 연구는 기존의 실세계의 로봇 시스템, 가상 환경, 가상 시뮬레이션 그리고 게임의 여러 캐릭터 위주의 장르에서도 활용범위를 넓힐 수 있다.
본 논문에서는 수학적 구조 모델과 인공신경망 기법을 상호 유기적으로 결합하여 구조물의 거동 데이터로부터 부재모델 또는 재료모델의 정확도를 높이는 정보기반 하이브리드 모델 업데이트 기법을 개발하였다. 유한요소와 같은 수학적 모델을 사용하여 구조물의 거동을 모사하기 위해서는 재료, 부재, 그리고 시스템의 정확한 모델링이 우선하여야 한다. 그러나 재 료, 부재의 각 레벨에서의 수학적인 모델은 이상화과정을 거치면서 중요한 특성을 생략하거나, 시스템 구성시 부재간의 상 호작용이나 경계조건의 단순화로 인해 유한요소 모델은 실제 구조물의 거동과 차이를 보이게 된다. 본 논문에서 제시된 하 이브리드 모델 업데이트 기법은 구조물의 거동과 수학적 모델의 해석결과 차이를 인공신경망 기법을 사용하여 보완함으로 써 시스템 모델의 정확도를 높일 수 있다. 이때 시스템의 거동 데이터로부터 부재 또는 재료모델을 개선할 수 있는 데이터 를 추출하여 부재 또는 재료모델을 개선한다. 제시된 기법은 보-기둥 접합부의 이력모델을 개선하는 것으로 검증하였으며, 복잡한 거동을 보이는 시스템 모델링에 광범위하게 사용될 수 있다.
High hardness steel generally means its hardness over HRC45. This using CBN tools for turning. Tool breakage and damage during turning process cause material loss and additional tool cost. If it is predicted during the process and accumulate this data as a turning parameter it will be of help to turning mechanism understanding. For this purpose neural technology give beneficial as prediction, categorization, searching and enable nolinear function for pre-diagnosis algorithm. In this study we appraise the accuracy of prediction by applying backpropagation neural networks (BPNs) method in the high hardness steel turning.
Using artificial neural network (ANN) technique, auction prices for common mackerel were forecasted with the daily total sale and auction price data at the Busan Cooperative Fish Market before introducing Total Allowable Catch (TAC) system, when catch data had no limit in Korea. Virtual input data produced from actual data were used to improve the accuracy of prediction and the suitable neural network was induced for the prediction. We tested 35 networks to be retained 10, and found good performance network with regression ratio of 0.904 and determination coefficient of 0.695. There were significant variations between training and verification errors in this network. Ideally, it should require more training cases to avoid over-learning, which leads to improve performance and makes the results more reliable. And the precision of prediction was improved when environmental factors including physical and biological variables were added. This network for prediction of price and catch was considered to be applicable for other fishes.
뇌과학은 심리학이나 정신과학의 영역을 넘어 신체적 질병과 관련된 임상 영역에서도 중요한 분야가 되었을 뿐 아니라, 이제 심신통합치유의 필요성을 설명하는 이론적 기반으로서 자리잡고 있다. 몸의 질병은 더 이상 몸만의 질병이 아니며, 마음의 질병 또한 마음만의 문제가 아닌 것이 심신의학이나 신경생리학을 통해 설명되고 있으며, 그 중심에는 몸과 마음의 상태를 통합하고 기능을 조절하는 신경계가 있는 것이다. 뉴로아트테라피(neuroart therapy)는 신경과학 이론을 기반으로 하여 심신의학적 개입법들을 포괄적으로 제공하는 전인적 치유기법으로서, 다양한 표현 예술치료 활동과 첨단 뇌기능 훈련을 핵심적 치유 매체로 활용하여 몸과 마음의 질병을 치유하고, 내적 잠재력과 정서를 계발하여 심신의 성장을 도모하기 위해 개발된 새로운 치유 분야이다. 뉴로아트테라피는 인간 개개인의 개별성과 그를 둘러싼 환경과의 역동성, 그리고 심신상관성에 입각하여 개발된 치유적 접근법이다. 또한 내담자의 몸과 마음에 내재된 치유력의 회복과 신경계를 통한 적응적 반응의 생리학적 각인을 치유의 객관적 목표로 삼는다. 뇌의 통합적이고 조화로운 기능이 결국 심신의 건강을 결정한다는 전제에 기초하여, 모든 심신의 증상에 대한 치유에 있어서 뉴로아트테라피의 신경학적 최종 목표는 전뇌의 균형과 조화이다. 뇌의 신경망은 학습, 경험에 의해 지속적으로 새롭게 형성되고 강화 또는 소멸되는데, 그 신경망의 양상이 개인의 성격, 습관, 생리적 특성, 질병에 대한 취약성 등으로 나타나는 것이다. 뉴로아트테라피의 치유 과정은 신경계에서 새로운 신경망을 형성하며 긍정적 경험으로 기억되며, 그 경험들이 반복되면서 새로 형성된 신경망이 기존의 부적응적인 생리과정을 점차로 소거하고 대체하는 신경학적 과정이 수반된다. 뇌는 곧 전신의 생리적 기능과 심신의 상태를 조절하고 마음과 행동을 조형하는 곳이므로, 뇌의 변화를 추구하는 치유의 방식은 영속적이고 포괄적인 전인적 접근이라 할 수 있다. 이러한 과정들은 모두 내담자 자신의 능동적이고 자발적인 참여가 전제된다는 점에서 치료자 중심의 접근 방식들과 다르다. 무엇보다도 스스로의 참여는 새로운 내적 경험을 가능하게 하는데, 이와 같은 효과가 체화되면 약물과 같은 외부의 치료적 개입이 지속하지 않아도 효과가 유지된다. 또한 이러한 치료는 잠재된 능력을 계발하고 삶의 지평을 확장할 수 있도록 하는 전인치유의 기반이 된다.
저류층 내에 부존되어 있는 탄화수소의 매장량을 계산하기 위해서는 그 저류층의 공극률이 필요하다. 일반적으로 시추공 이외의 지역에 대한 공극률은 시추공에서 얻은 공극률 검층자료로부터 외삽하여 얻지만, 시추공을 포함한 지역에서 획득한 탄성파탐사 자료가 존재하는 경우 시추공 자료와 함께 탄성파 탐사 자료를 이용하여 시추공 이외의 지역에서 보다 정확한 유사 공극률을 추출해낼 수 있다. 이 연구에서는 다항식 신경망 기법을 이용하여 탄성파 탐사 자료와 공극률 검층 자료로부터 유사 공극률 검층 자료를 생성하는 모듈을 개발하였다. 먼저 탄성파 탐사 자료로부터 추출된 지하매질의 특성을 나타내는 탄성파 속성(seismic attribute)과 심도에 따른 시간의 자료로 변환된 공극률 검층 자료로부터 다항식 신경망 기법을 사용하여 상관계수를 추출하였고 이 계수를 이용하여 시추공이 없는 지역에서의 공극률 정보를 생성하였다. 한편, 개발된 모듈에서는 보다 정확한 공극률을 획득하기 위하여 각각의 탄성파 속성들과 공극률 검층 자료와의 상관성 분석을 통해 상관성이 높은 탄성파 속성들을 사용하였다. 개발된 다항식 신경망 모듈의 신뢰성, 활용성을 검증하기 위하여 개발된 모듈을 북해 F3 지역의 현장자료에 적용하고, 얻어진 결과를 상용 프로그램에서 사용되는 확률론적 신경망 기법을 통해 얻어진 결과와 비교하였다. 두 방법으로부터 얻은 결과들은 유사한 결과를 보였으며 이를 통해 개발된 모듈의 신뢰성을 입증할 수 있었다. 또한, 다항식 신경망 기법으로부터 얻어진 유사 공극률 검층 자료가 확률론적 신경망 기법을 통해 얻어진 결과보다 실제 값에 더 가깝다는 것을 보여주었다. 따라서 북해 F3 지역과 같이 시추공 자료가 부족한 지역에서는 다항식 신경망 기법이 효과적임을 알 수 있었다.
본 연구는 불특정 다수의 도로이용자들이 경로우회 시 갖는 의사결정과정속에 내포된 비선형성과 불확실성을 고려한 정도 있는 모형구축으로 주요 우회결정요인을 분석하는 것이 주요 목적이다. 이를 위하여 고속도로 및 국도를 이용하는 운전자를 대상으로 우회여부에 관련된 SP조사를 실시하였고, 조사결과에 대하여 의사결정나무와 신경망이론의 결합된 모형을 구축하여 운전자 우회결정요인을 분석하였다. 분석결과 운전자 우회여부결정에 영향을 미치는 요인은 우회도로 인지여부, 교통정보 신뢰도 및 이용빈도, 경로전환빈도, 나이순으로 나타났다. 또한 오분류표를 통한 기존 모형과의 예측력의 비교결과 결합된 모형의 오분류율이 8.7%로 기존 모형인 로짓모형 12.8%, 의사결정나무 단독 모형 13.8%와 비교했을 때 가장 예측력이 높은 것으로 나타나 운전자 우회결정요인 분석에 관한 모형의 적용 타당성을 확인할 수 있었다. 본 연구의 결과는 향후 교통량 분산효과와 도로망 효율 증대를 위한 효과적인 우회관리전략 수립 시 기초 자료로 활용가능하리라 사료된다.
본 논문에서는 신경망 SOM학습을 이용하여 피험자의 각성수준을 높은각성과 낮은각성으로 자동인식하는 것을 제안한다. 각성수준의 자동인식 단계는 세 단계로 구성된다 첫 번째는 ECG 측정 및 분석단계로 슈팅게임을 플레이하는 피험자를 ECG로 측정하고, SOM 학습을 하기 위해 특징을 추출한다. 두 번째는 SOM 학습 단계로 특징이 추출된 입력벡터들을 학습한다. 마지막으로 각성인식 단계는 SOM 학습이 완료된 후에 새로운 입력벡터가 들어왔을 때, 피험자의 각성수준을 인식한다. 실험결과는 각성수준의 SOM 학습결과와 새로운 입력벡터가 들어왔을 때 각성수준의 인식결과, 그리고 각성수준을 수치와 그래프로 보여준다. 마지막으로 SOM의 평가는 기존연구의 감성평가 결과와 SOM의 자동인식 결과를 순차적으로 비교하여 평균 86%로 분석되었다. 본 연구를 통해서 SOM을 이용하여 피험자마다 다른 각성수준을 자동인식 할 수 있었다.
본 연구는 신호교차로 교통사고예측모형 구축 과정 중 일반적으로 제한된 변수의 선정 및 모형의 구축에만 주로 초점이 맞추어진 기존 방법론의 문제점을 개선하고, 자료조사 및 수집 과정에서 발생하는 자료의 불확실한 상태를 인정하면서 자료의 불확실성을 최소화하여 이용할 수 있는 방법론을 개발하는데 연구의 주안점을 두었다. 퍼지추론이론과 신경망이론을 이용한 모형을 구축하였고, 마지막으로 구축된 퍼지추론이론 모형 및 신경망이론 모형과 기존 회귀모형인 포아송 회귀모형간의 통계적인 검증과 실제 Data를 이용한 모형의 적정성을 검토하였다. 모형의 통계적인 검증시 기존모형에 비해 퍼지추론모형과 신경망이론모형이 더 설명력이 높은 것으로 나타났고, 검증에서도 퍼지추론이론과 신경망이론이 적절한 것으로 나타났으며 기존모형보다 사고건수를 예측하는 설명력이 높은 것으로 입증되었다. 본 연구에서 개발된 모형은 계획 및 운영단계에서 신호교차로의 안전성을 측정하는데 활용될 수 있으며, 궁극적으로는 신호교차로에서 교통사고를 줄이는데 기여할 수 있을 것으로 판단된다.
High-performance concrete (HPC) is a new terminology used in concrete construction industry. Several studies have shown that concrete strength development is determined not only by the water-to-cement ratio but also influenced by the content of other conc
High-performance concrete(HPC) is a new terminology used in concrete construction industry. Several studies have shown that concrete strength development is determined not only by the water-to-cement ratio but also influenced by the content of other concrete ingredients. HPC is a highly complex material, which makes modeling its behavior a very difficult task. This paper aimed at demonstrating the possibilities of adapting artificial neural network (ANN) to predict the comprresive strength of HPC. Mahalanobis Distance(MD) outlier detection method used for the purpose increase prediction ability of ANN. The detailed procedure of calculating Mahalanobis Distance (MD) is described. The effects of outlier compared with before and after artificial neural network training. MD outlier detection method successfully removed existence of outlier and improved the neural network training and prediction perfomance.