We have constructed the foundations to a series of theoretical diagnostic methods to probe the jet phenomenon in young stars as observed at various optical forbidden lines. We calculate and model in a self-consistent manner the physical and radiative processes which arise within an inner disk-wind driven magneto centrifugally from the circumstellar accretion disk of a young sun-like star. Comparing with real data taken at high angular resolution, our approach will provide the basis of systematic diagnostics for jets and their related young stellar objects, to attest the emission mechanisms of such phenomena. This work can help bring first-principle theoretical predictions to confront actual multi-wavelength observations, and will bridge the link between many very sophiscated numerical simulations and observational data. Analysis methods discussed here are immediately applicable to new high-resolution data obtained with HST and Adaptic Optics.
We suggest a possible scenario of an astrophysical black hole with non-vanishing electric charge and magnetic flux. The equilibrium charge on a rotating black hole in a force-free magnetosphere is calculated to be Q ~ BJ with a horizon flux of ~ BM2, which is not large enough to disturb the background Kerr geometry. Being similar to the electric charge of a magnetar, in sign and order of magnitude, both electric charge and magnetic flux are supposed to be continuous onto a black hole.
Radiation hydrodynamics in high. velocity or high optical-depth flow should be treated under rigorous relativistic formalism. Relativistic radiation hydrodynamic moment equations are summarized, and its application to the near-critical accretion onto neutron star is discussed. The relativistic effects can dominate the dynamics of the flow even when the gravity is weak and the velocity is small. First order equations fail to describe the intricate relativistic effects correctly.
Strong thermal X-ray emission, called Galactic Ridge X-ray Emission, is observed along the Galactic plane (Koyama et al. 1986). The origin of hot (~7 keV) component of GRXE is not known, while cool (~0.8 keV) one is associated with supernovae (Kaneda et al. 1997, Sugizaki et al. 2001). We propose a possible mechanism to explain the origin; locally strong magnetic fields of Blocal ~30 μG heat interstellar gas to ~7 keV via magnetic reconnection (Tanuma et al. 1999). There will be the small-scale (< 10 pc) strong magnetic fields, which can be observed as (B)obs ~3 μG by integration of Faraday Rotation Measure, if it is localized by a volume filling factor of f ~ 0.1. In order to examine this model, we solved three-dimensional (3D) resistive magnetohydrodynamic (MHD) equations numerically to examine the magnetic reconnect ion triggered by a supernova shock (fig.l). We assume that the magnetic field is Bx = 30tanh(y/20pc) μG, By = Bz = 0, and the temperature is uniform, at the initial condition. We put a supernova explosion outside the current sheet. The supernova-shock, as a result, triggers the magnetic reconnect ion, and the gas is heatd to > 7 keV. The magnetic reconnect ion heats the interstellar gas to ~7 keV in the Galactic plane, if it occurs in the locally strong magnetic fields of Blocal ~30 μG. The heated plasma is confined by the magnetic field for ~10 5.5 yr. The required interval of the magnetic reconnect ions (triggered by anything) is ~1 - 10 yr. The magnetic reconnect ion will explain the origin of X-rays from the Galactic ridge, furthermore the Galactic halo, and clusters of galaxies.
Some authors have concluded that spiral structures and shocks do not develop if an adiabatic index ɤ > 1.16 is adopted in accretion disc modelling, whilst others have claimed that they obtained well defined spirals and shocks adopting a ɤ = 1.2 and a M2/ M1 = 1 stellar mass ratio. In our opinion, it should be possible to develop spiral structures for low compressibility gas accretion discs if the primary component is a black hole. We considered a primary black hole of 8M⊙ and a small secondary component of 0.5M⊙ to favour spiral structures formations and possible spiral shocks via gas compression due to a strong gravitational attraction. We performed two 3D SPH simulations and two 2D SPH simulations and characterized a low compressibility model and a high compressibility model for each couple of simulations. 2D models reveal spiral structures existence. Moreover, spiral shocks are also evident in high compressibility 2D model at the outer disc edge. We believe that we could develop even well defined spiral shocks considering a more massive primary component.
The response of the earth's magnetosphere to the variation of the solar wind parameters and Interplanetary magnetic field (IMF) has been stud}ed by using a high-resolution, three-dimension magnetohydrodynamic (MHD) simulation when the WIND data of velocity Vx, plasma density, dynamic pressure, By and Bz every 1 minute were used as input. Large electrojet and magnetic storm which occurred on October 21 and 22 are reproduced in the simulation (fig. 1). We have studied the energy transfer and tail reconnect ion in association with geomagnetic storms.
Compressible, magnetohydrodynamic (MHD) turbulence in two dimension is studied through high-resolution, numerical simulations with the isothermal equation of state. First, hydrodynamic turbulence with Mach number (M)rms ~ 1 is generated by enforcing a random force. Next, initial, uniform magnetic field of various strengths with Alfvenic Mach number Ma ≫ 1 is added. Then, the simulations are followed until MHD turbulence is fully developed. Such turbulence is expected to exist in a variety of astrophysical environments including clusters of galaxies. Although no dissipation is included explicitly in our simulations, truncation errors produce dissipation which induces numerical resistivity. It mimics a hyper-resistivity in our second-order accurate code. After saturation, the resulting flows are categorized as SF (strong field), WF (weak field), and VWF (very weak field) classes respectively, depending on the average magnetic field strength described with Alfvenic Mach number, (Ma)rms ~1, (Ma)rms≥1, and (Ma)rms ≫ 1. The characteristics of each class are discussed.
This poster summarizes numerical collapse calculations of non-rotating and rotating singular, isothermal toroids that employed the zeus2d (Norman and Stone 1992) magnetohydrodynamics package. In the non-rotating collapse calculations, it is seen that infall proceeds at a constant rate and magnetically supported, high density pseudo-disks form in the equatorial plane. With rotating clouds, however, toroidal magnetic fields grow as infall proceeds, teaming with angular momentum to slow the inflow to the center and generate outflow.
We investigate the morphology of Active Galactic Nuclei(AGN) jets. AGN jets propagate over kpc ~ Mpc and their beam velocities are close to the speed of light. The reason why many jets propagate over so long a distance and sustain a very collimated structure is not well understood. It is argued that some dimensionless parameters, the density and the pressure ratio of the jet beam and the ambient gas, the Mach number of the beam, and relative speed of the beam compared to the speed of light, are very useful to understand the morphology of jets namely, bow shocks, cocoons, nodes etc. The role of each parameters has been studied by numerical simulations. But more research is necessary to understand it systematically. We have developed 2D relativistic hydrodynamic code to analyze relativistic jets. We pay attention to the propagation velocity which is derived from 1D momentum balance in the frame of the working surface. We show some of our models and discuss the dependence of the morphology of jets on the parameter.
We study the properties of supernova (SN) driven interstellar turbulence with a numerical magnetohydrodynamic (MHD) model. Calculations were done using the RIEMANN framework for MHD, which is highly suited for astrophysical flows because it tracks shocks using a Riemann solver and ensures pressure positivity and a divergence-free magnetic field. We start our simulations with a uniform density threaded by a uniform magnetic field. A simplified radiative cooling curve and a constant heating rate are also included. In this radiatively-cooling magnetized medium, we explode SNe one at a time at randomly chosen positions with SN explosion rates equal to and 12 times higher than the Galactic value. The evolution of the system is basically determined by the input energy of SN explosions and the output energy of radiative cooling. We follow the simulations to the point where the total energy of the system, as well as thermal, kinetic, and magnetic energy individually, has reached a quasi-stationary value. From the numerical experiments, we find that: i) both thermal and dynamical processes are important in determining the phases of the interstellar medium, and ii) the power index n of the B-p n relation is consistent with observed values.
One-dimensional hydrodynamic modeling of a protostellar flare loop is presented. The model consists of thermally isolated loop connecting the central core and the accretion disk. We found that the conductive heat flux of a flare heated the accretion disk up to coronal temperature and consequently the disk is evaporated and disappeard. This effect may explain the ovserved feature of the repeated flare from the young stellar object YLW 15.
Here were continue the MHD study started by Santillan et al (1999) for the interaction of high-velocity clouds (HVCs) with the magnetized thick gaseous disk of our Galaxy. We use the MHD code ZEUS-3D and perform 3D-numerical simulations of this interaction, and study the formation of head-tail structures in HVCs. Our results show that clouds located above 2 kpc from mindplane present velocity and column density gradients with a cometary structure that is similar to those observed in 21 cm emission