We conducted a survey of actual using conditions of farm-made liquid fertilizers by investigating their formulation types, materials, making processes, using methods and various beneficial effects on 29 farms certified by National Agricultural Products Quality Management Service to produce environment-friendly agricultural products in 2009. Most of the materials used to make liquid fertilizers are those that can be easily obtained around the farms. Molasses or black sugar are added as an energy source of microorganism. And leaf mold, bacterial cultures supplied by agricultural extension centers of local governments, and cultures of native microorganisms
were used as microbial sources for fermenting effective microorganisms. Types of the farm-made liquid fertilizers were fermented liquid fertilizers, fermented plant juices, amino acid liquid fertilizers, calcium-liquid fertilizers, and phosphoric acid liquid fertilizers. Effects of liquid fertilizers used by the farms were found to promote plant growth by supplying nutrition, to accelerate blooming and flower bud formation, to enhance the quality of agricultural products such as increase of sugar contents and improvement of storing conditions, to induce resistance against diseases and insect pests, and to cause endurance to high temperature stress. Chemical properties of the liquid fertilizers collected were analyzed. As a result, pH and EC range showed differences according to kinds of the liquid fertilizers. Amount of macro-nutrients, such as nitrogen and phosphoric acid, in most of the collected liquid fertilizers, was found to be low. Even though the
liquid fertilizers were made from same materials, their contents was found to be different depending on the making process.
This study developed a high-utility type of vinegar from Rubus coreanus by optimizing its fermentation conditions. In the alcohol fermentation process, the optimal conditions for the maximization of the alcohol contents were an initial sugar concentration of 15 °Brix, a temperature of 30℃ and 4 days. The optimal conditions for the acetic acid fermentation were 9 days of fermentation at 30℃ and 200 rpm, with 6% alcohol and 2% initial acidity. The sucrose, fructose, and glucose contents were 952.90, 491.01, and 386.62 mg%, respectively. The free organic acids were acetic, malic, succinic, malonic, oxalic, and lactic acids. The total free amino acid content was 104.33 μg/mL, with alanine, glutamic acid, γ-amino-N-butyric acid, and o-phospho-ethanolamine as the major amino acids. The K, Na, and Mg contents were 1,686.10, 172.50, and 69.33 ppm, respectively. The total phenolic and anthocyanin contents were 25.19 and 80.71 mg/100 mL, respectively. The DPPH- and ABTS.+ radical scavenging activities were approximately 65 and 94%, respectively. Moreover, the vinegar’s β-carotene bleaching activity and reducing power showed that it had strong anti-oxidant properties. These results show that Rubus coreanus vinegar has anti-oxidant properties and may be used as functional food.
Cheongkookjang that was prepared with three kinds of soybeans [non-germinated soybean (NG), soybeans germinated for 12 hr (GS12), and soybeans germinated for 24 hr (GS24)] were investigated. The changes in the pH, total aerobes, and slime content of Cheongkookjangs that were prepared with NG, GS12 and GS24 did not significantly differ during their fermentation for 48 hr at 40℃. The total aerobes of the Cheongkookjang variants reached 108~109 CFU/mL after theirfermentation for 48 hr. The total polyphenol content and DPPH-radical-scavenging activities the germionated and non-germinated soybeans did not significantly differ, but increased significantly according to the germination degree during the fermentation. The isoflavone content of the Cheongkookjang with the germinated soybean increased. The isoflavone content of Cheongkookjang variant were 0.141 mg/g (NG), 0.369 mg/g (GS12) and 0.569 mg/g (GS24); their free amino acid contents were 254.26 mg% (NG), 337.49 mg% (GS12) and 528.78 mg% (GS24); and their sensory characteristics such as their taste, color, flavor, bitter taste, texture, and overall acceptability did not significantly differ.
This study was conducted to develop a sauce prepared with sweet pumpkin and Korea Doenjang. The optimum conditions for manufacturing sweet pumpkin-doenjang sauce were investigated using the response surface methodology, based on the central composition design. The amount of stock added, the thickening agent, and doenjang were used as the independent variables, and the sensory characteristics (taste, flavor, color, and overall acceptability) were used as the dependent variables to evaluate the optimum conditions for the preparation of the sauce. The optimum conditions for the maximized-responses variables in the preparation of the sauce were 448.5 g of sweet pumpkin stock, 331.5 g of the thickening agent, and 20.0 g of doenjang. The quality characteristics of sweet pumpkin-doenjang sauce that was manufactured at optimum conditions were as follow: 89.55% moisture content, 0.70% crude protein, 0.10% crude lipids, and 0.71% crude ash. The pH of the sauce was 5.96; total acidity, 0.08%; and soluble solids, 6.80 °Brix. The total polyphenol content of the sauce was 5.70 mg/L. The electron-donating ability and reducing power of the sauce were, 14.24% and 1.64 OD, respectively.
Emission characteristics of gaseous odor compounds emitted from the charcoal manufacturing process were investigated, and evaluated the odor removal efficiency of odor control devices. It was found that the measured odor dilution ratio of emission gases ranged from 10,000 to 44,814, which exceed largely the emission standard in the stack. Methylmercaptan, trimethylamine, hydrogen sulfide, acetaldehyde were turned out as major odor compounds of the charcoal manufacturing process. It was revealed that the odor removal ratio of odor control devices were very low due to the its improper maintenance and wrong design.
The waste treatment cost and energy production benefit of Wonju city RDF plant, the first RDF manufacturing plant in Korea, were investigated in this study. All plant operation data, like total weight of received wastes, produced RDF and separated rejects in processes have been fully recorded for mass balance calculation of the plant. Also all consumed oil and electricity have been recorded for energy balance calculation. The results showed that the waste treatment cost not included the RDF sales price of 25,000 won/ton-RDF was 139,316 won/ton-MSW and it went down to 128,640 won when included the RDF price in 2011. Produced RDF was 42.7% of total received waste in weight. Three components analysis by mass balance calculation of total received waste showed that Wonju city's MSW was 34.0% of combustible, 35.0% of water and 31% of incombustible respectively. Energy effect was found that total amount of produced energy was about 4 times more than that of consumed energy. Analysis data for 5 years since 2007 were summarized and shown in this study.
The objective of this study was to characterize three different commercial (A, B and C) and two handmade (HM-AP, atmospheric pressure; HM-RP, reduced pressure) strawberry jams in relation to soluble solids, pH, total acid, total polyphenol, anthocyanin, color values, texture properties, and sensory evaluation. The soluble solid contents varied from 62.33 to 68.33 °Brix, and the pH ranged from 3.59 to 3.70. The color L and a values were the highest in the HM-RP strawberry jam (p<0.05). The total polyphenol contents of commercial jams A, B, and C were 56.10, 97.59, and 105.85 mg GAE/100 g, respectively, and those of the HM-AP and HM-RP of handmade jams were 156.13 and 189.94 mg GAE/100 g. The anthocyanin contents of A, B, and C commercial jams were 1.51, 0.95, and 0.80 mg/100 g, respectively, and those of the HM-AP and HM-RP handmade jams were 2.64 and 9.16 mg/100 g. The phenolic contents of the HM-RP jam were significantly much higher than those of the other jams. The hardness ranged from 5.67×103 (HM-AP jam) to 41.91×103 (jam B) dyne/cm2, the jelly strength ranged from 40.08 (HM-AP jam) to 180.33 (jam B) dyne, and the strength ranged from 83.84 (jam C) to 302.93 (jam B) g. The sensory evaluation of the color, flavor, sweetness, sourness, viscosity and overall acceptability of the HM-RP jam showed higher values than those of the other jams. Especially, the highest value of the color score was found in the HM-RP jam. The electon donating abilities of jams A, B, and C and of the HM-AP and HM-RP jams were 44.27, 41.70, 53.06, 69.08, and 73.21%, respectively. These results indicated that the HM-RP strawberry jam prepared with reduced pressure using micro-oxygen technology was a good source of phenolic compounds, total polyphenols and anthocyanin, and had a high level of antioxidant activity.
To improve the mechanical properties of hydroxyapatite (HA)/waterborne polyurethane (WBPU) composites, the hydroxyl group of HA was modified by urethane reactions: the hydroxyl groups of HA were reacted with aliphatic or cyclic diisocyanate, and then the modified HAs were extended by adding polyol and/or ε-caprolactone. Composites were prepared by the prepolymer process method: the modified HA was directly pured into the urethane reaction of isocyanate and polyol. The properties of modified HA/WBPU composites were investigated by thermogravimetric analysis, tensile strength, and water resistance. The results showed that the reactivity of aliphatic diisocyanate to the hydroxy group of HA was faster than that of cyclic one. Comparing to those of pure HA/WBPU composite films, the thermal stability, water resistance, and mechanical properties of the modified composite films increased with a degree of modification of HA.
The growth inhibition effect of Doenjang that was prepared with various kinds of solar salt was investigated. Doenjang was prepared using the bacterial koji and five kind of salt with 12% salt concentration (w/w): purified salt Doenjang, one-year aged solar salt Doenjang, four-year aged solar salt Doenjang, topan solar salt Doenjang, and boiled solar salt Doenjang. The Doenjangs were fermented and aged for 18 months. The growth inhibition effects of the water extracts and the methanol extracts of the Doenjangs were measured on AGS human gastric adenocarcinoma cells, HT-29 colon carcinoma cells, and BJ human foreskin normal cells using MTT assay. The water and methanol extracts of the Doenjang samples showed growth inhibition effects on the cancer cells, in the following order of the samples with the strongest to the weakest effect: the four-year aged solar salt Doenjang, the topan solar salt Doenjang, the boiled solar salt Doenjang, the one-year aged solar salt Doenjang, and the purified salt Doenjang. The methanol extracts of the four-year aged solar salt Doenjang (AGS: 55% and HT-29: 48%) showed the strongest growth inhibition effect. In addition, decreased cancer cell numbers and morphological changes in the cancer cells (AGS and HT-29) were observed when the methanol extract of the four-year aged solar salt Doenjang was treated. None of the Doenjang extracts showed a growth inhibition effect on the BJ normal cells, though.
The temperature changes and quality characteristics of Makgeolli produced using rice treated with Gaeryang-Nuruk (commercial improved Nuruk) extract were investigated. During fermentation, the treated rice maintained a lower temperature than the control and then rose after the fifth mashing day. For all the treatments, the numbers of yeast, LAB and AAB colonies increased on the second mashing day, and then gradually decreased. As the fermentation proceeded, the pH gradually increased from the third mashing day, and eventually became higher than that on the initial mashing day. The total acid contents increased on the first mashing day, but as the fermentation progressed, they showed little change. The amino acidity and soluble solid contents during overall fermentation and reducing-sugar contents was reduced until the first mashing day, and increased from the day after. As for the alcohol content, that of the control was 6.87% on the first mashing day, and then gradually increased, nuruk-extract-treated rice began with 9~10% alcohol content and then increased as the fermentation proceeded. Among the organic acid contents, lactate was the main material. In the sensory evaluation, the 24 h-, 48 h- and 72 h- treated rice samples showed somewhat good response.
This study was conducted to investigate changes in composition of ginsenosides and color of processed ginsengs prepared by different steaming-drying times. Processed ginsengs were prepared from white ginseng with skin by 9-time repeated steaming at 96℃ for 3 hours and followed by hot air-drying at 50℃ for 24 hours. As the times of steaming processes increased, lightness (L value) decreased and redness (a value) increased in color of ginseng powders. Crude saponin contents and ginsenosides compositions in processed ginsengs prepared by different steaming-drying times were investigated using the HPLC method, respecively. Crude saponin contents according to increasing steaming-drying times decreased in some degree. In the case of major ginsenosides, the contents of Rb1, Rb2, Rc, Rd, Rf, Re, RG1, Re were decreased with increase in steamimg times, but those of Rh1, Rg3, Rk1 were increased after especially 3 times of steaming processes. Interestingly, in black ginseng were prepared by 9 times steaming processes, the content of ginsenoside Rg3 was 8.20 mg/g, approximately 18 times higher than that (0.46 mg/g) in red ginseng. In addition, the ratio of the protopanaxadiol group and protopanaxatiol group (PD/PT) were increased from 1.9 to 8.4 due to increasing times of steamming process.
A unit emission reduction of nitrous oxide (N2O) from anthropogenic sources is equivalent to a 310-unit CO2 emission reduction because the N2O has the global warming potential (GWP) of 310. This greatly promoted very active development and commercialization of catalysts to control N2O emissions from large-scale stationary sources, representatively nitric acid production plants, and numerous catalytic systems have been proposed for the N2O reduction to date and here designated to Options A to C with respect to in-duct-application scenarios. Whether or not these Options are suitable for N2O emissions control in nitric acid industries is primarily determined by positions of them being operated in nitric acid plants, which is mainly due to the difference in gas temperatures, compositions and pressures. The Option A being installed in the NH3 oxidation reactor requires catalysts that have very strong thermal stability and high selectivity, while the Option B technologies are operated between the NO2 absorption column and the gas expander and catalysts with medium thermal stability, good water tolerance and strong hydrothermal stability are applicable for this option. Catalysts for the Option C, that is positioned after the gas expander thereby having the lowest gas temperatures and pressure, should possess high deN2O performance and excellent water tolerance under such conditions. Consequently, each deN2O technology has different opportunities in nitric acid production plants and the best solution needs to be chosen considering the process requirements.