검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 10,937

        901.
        2022.10 구독 인증기관·개인회원 무료
        To ensure the peaceful use of nuclear energy, nuclear safeguards are applied in member states of the International Atomic Energy Agency (IAEA) under the Non-Proliferation Treaty. The two major considerations in implementing nuclear safeguards are effectiveness and efficiency. In terms of efficiency, the IAEA has a great interest in using containment and surveillance (C/S) technology to maintain continuity of knowledge. A representative means of C/S technology is a sealing system to detect tampering. The existing sealing systems used by the IAEA are of limited functionality in realtime verification purposes. To address this limitation, the present study develops a real-time verification sealing system. First, we analyzed the design requirements of a sealing system proposed by various institutions including the IAEA, the U.S. Nuclear Regulatory Commission, and a number of national laboratories and companies. Then, we identified the appropriate design requirements of this system for real-time verification. Finally, the prototype system was developed and tested based on the identified design requirements. The validation tests of the prototype system were performed for anticipated environmental conditions, radiation resistance, and safeguards functionality. Additionally, we are developing user-friendly verification software. The software validation is planned to perform for functionality, performance efficiency, and security. The next step is to develop a commercialized realtime verification sealing system based on the results of validation tests. Using this commercialized system, we plan to evaluate the performance in various actual use cases. Such a system is expected to significantly enhance the efficiency of nuclear safeguards.
        902.
        2022.10 구독 인증기관·개인회원 무료
        The measurement activities to evaluate material balance of nuclear material are usually performed by operator. It is because that the IAEA does not have enough manpower to carry out nuclear measurement accountancy of all nuclear materials in the world. Therefore, the IAEA should consider scenarios which facility operator tries to divert nuclear material for misuse by distorting measurement record. It is required to verify the operator’s measurement data whether it is normal or not. IAEA measures inventory items using their own equipment which is independent of facility operator equipment for verification. Since all inventory lists cannot be verified due to limited resources, the number of items to be verified is determined through statistical method which is called as sample size calculation. They measure for the selected items using their own equipment and compares with operator’s record. The IAEA determines sample size by comprehensively considering targeted diverted nuclear material amount and targeted non-detection probability and performance of measurement equipment. In general, the targeted diverted nuclear material amount is considered significant quantity (plutonium: 8 kg, uranium-235: 75 kg). If the targeted non-detection probability or the performance of the verification equipment is low, the sample size increases, and on the contrary, in the case of high non-detection probability or good performance of verification equipment, even a small sample size is satisfied. It cannot be determined from a single sample size calculation because there are so many sample size combinations for each verification equipment and there are many diversion scenarios to be considered. So, IAEA estimates initial sample size based on statistical method to reduce calculation load. And then they calculate non-detection probability for a combination of initial sample size. Through the iteration calculation, the sample size that satisfies the closest to the target value is derived. The sample size calculation code has been developed to review IAEA’s calculation method. The main difference is that IAEA calculates sample size based on approximate equation, while in this study, sample size is calculated by exact equation. The benchmarking study was performed on reference materials. The data obtained by the code show similar results to the reference materials within an acceptable range. The calculation method developed in this study will be applied to support IAEA and domestic inspection activities in uranium fuel fabrication facility.
        903.
        2022.10 구독 인증기관·개인회원 무료
        The crisis of climate change aroused international needs to reduce the greenhouse gas emission in energy sector. Government of South Korea formulated an agenda of carbon neutrality through announcing 2050 Net-Zero Carbon Scenario A and B in October 2021. As the power supply from renewable energy increases, it becomes a core element to take into account the daily intermittency of renewable energy in analyzing the upcoming energy plans. However, the existing yearly Load Duration Curve is insufficient for applying day and night power change in daily scale into energy mix analysis, since it derives the energy mix for whole year on the basis of classifying annual base load and peak load. Therefore, a new energy mix simulation model based on the daily power load and supply simulation is needed for the future energy analysis. In this study we developed a new model which simulates the average power supply and demand daily (over a 24 hour period) for each season. The model calculates the excess and shortage power during day and night by integrating each energy’s daily power pattern. The 2050 Net-Zero Carbon Scenario A was used for the model verification, during which the same amounts of power production from each energy source were applied: nuclear, renewable, carbon-free gas turbine, fuel cell and byproduct gas. Total power demand pattern and renewable energy production pattern were drawn from the data of 2017 power production, and Pumped-storage Hydroelectricity and Energy Storage System were used as day-to-night conversion. Detailed assumptions for each energy were based on the Basis of Calculation for Net-Zero Carbon Scenario from Government. The model was verified with three cases which were divided depending on the method of hydrogen production and whether the Curtailment and Conversion Loss (CCL) of renewable energy were considered or not. Case 1 assumed production of hydrogen occurred for 24 hours while not considering CCL, had 0% relative error in comparison of total annual power production, and case 2, considering CCL, had a 1.741% relative error. Case 3 assumed production of hydrogen occurred only during daytime with excess power and CCL consideration, yielded 0.493% relative error in total amount of hydrogen production, confirming that the model sufficiently describes the Government’s Scenario A with the input of total power production. This model is expected to be used for analyzing further energy mix with different ratios of each energy source, with special focus on nuclear and renewable energy sources.
        909.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : Currently, the domestic construction industry is dominated by large-scale projects such as roads, ports, airports, and buildings. Construction on such projects is generally conducted simultaneously, but the process and quality management are led by a small number of responsible managers. In the case of road pavements, owing to rapid industrial development, economic growth, and the expansion of social overhead capital investment in the road construction industry, highways and general national roads have been constructed on a large scale. Therefore, this study aimed to improve and develop domestic concrete production and construction quality management by improving the reliability and transparency of production quality management and simplifying business processes. This was accomplished through the development of an Internet of Things (IoT)-based cement quality management system capable of automated design and build (D/B) construction and real-time monitoring. METHODS : The "IQ" system is a quality management system for enabling real-time monitoring of D/B quality at the time of concrete production and according to the designated age by utilizing quality test equipment developed with an LTE-Bluetooth function. It is possible to immediately identify and respond to quality problems through real-time monitoring, secure a reliable quality D/B because the quality test results cannot be arbitrarily manipulated, and to simplify the work process through the automatic D/B construction. In addition, improved quality control can be achieved through real-time information sharing and feedback system operations between contractors, managers, and personnel involved in construction. The quality control test items for developing the IQ system are the compression and flexural strengths, as these can be used to determine the design standard strength of pre-curing concretes (such as their slump and unit quantity) and the adequacy of the workability and durability, as well as the air volume to predict the durability, and the chloride content in the sections where reinforcement is used. CONCLUSIONS : This study identified difficulties and limitations in quality management according to the operation method in the domestic quality management systems, and in the real-time monitoring between managers and contractors. Thus, it was necessary to establish an improved systematic and reliable quality management system. The IQ system was developed to solve this problem.
        4,000원
        910.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The objective of this study was to evaluate the effectiveness of dust removal by dust removal vehicles by the measuring dust load and PM10 concentrations on the sidewalks of block pavements. METHODS : Field experiments were conducted to determine a dust removal method suitable for the sidewalk conditions, as identified through a literature review. Data collection was followed by the evaluation of the sidewalk dust load with removal vehicles and analysis of the PM10 content within a service road. Moreover, an economic analysis was conducted based on the social costs of dust reduction. RESULTS : When cleaning a sidewalk block by spraying water, the contaminants in small gaps in the block pavement could be reduced, providing a potential solution to void clogging. The dust on the surface of the sidewalk was suspended from a paved road with a high level of traffic volume. Using sidewalk dust removal vehicles with sweeping, spraying water, and inhalation reduced the dust load and PM10 contents by more than 2 and 0.07g/m2, respectively. CONCLUSIONS : According to the economic analysis of the development of dust removal vehicles for sidewalks, the cost-benefit analysis method shows an input effect of 0.4, but if the reduction amount of fine particles such as PM2.5, further experiments are necessary to address the atmospheric fine dust concentrations resulting from cleaning sidewalk block pavements.
        4,300원