Water electrolysis holds great potential as a method for producing renewable hydrogen fuel at large-scale, and to replace the fossil fuels responsible for greenhouse gases emissions and global climate change. To reduce the cost of hydrogen and make it competitive against fossil fuels, the efficiency of green hydrogen production should be maximized. This requires superior electrocatalysts to reduce the reaction energy barriers. The development of catalytic materials has mostly relied on empirical, trial-and-error methods because of the complicated, multidimensional, and dynamic nature of catalysis, requiring significant time and effort to find optimized multicomponent catalysts under a variety of reaction conditions. The ultimate goal for all researchers in the materials science and engineering field is the rational and efficient design of materials with desired performance. Discovering and understanding new catalysts with desired properties is at the heart of materials science research. This process can benefit from machine learning (ML), given the complex nature of catalytic reactions and vast range of candidate materials. This review summarizes recent achievements in catalysts discovery for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The basic concepts of ML algorithms and practical guides for materials scientists are also demonstrated. The challenges and strategies of applying ML are discussed, which should be collaboratively addressed by materials scientists and ML communities. The ultimate integration of ML in catalyst development is expected to accelerate the design, discovery, optimization, and interpretation of superior electrocatalysts, to realize a carbon-free ecosystem based on green hydrogen.
Freshwater and brackish blue-green algae were collected at 43 freshwater and brackish sites (including lakes, ponds, swamps, streams, and rivers and estuaries) throughout South Korea from March 2017 to October 2018, and were identified using light microscopy. A total 223 taxa in freshwater and 230 taxa in brackish waters in 2017 and 274 taxa in fresh and brackish waters in 2018 were identified and among them, 20 taxa were unreported taxa of blue-green algae in Korea; The new recorded taxa were Aphanocapsa marina, Calothrix fusca f. durabilis, Calothrix littoralis, Calothrix parva, Chamaesiphon minimus, Chroococcidiopsis cubana, Chroococcidiopsis fissurarum, Coelosphaerium aerugineum, Dolichospermum mendotae, Eucapsis alpine, Gomphosphaeria cordiformis, Gomphosphaeria natans, Merismopedia danubiana, Lynbya aestuarii var. gaditana, Tolypothrix tenuis, Pseudocapsa maritima, Pseudocapsa sphaerica, Pseudophormidium tenue, Trichodesmus sp. and Woronichinia elorantae.
본 연구는 집단급식소에서 제공되는 빈도수가 높은 비 가열 및 가열조리 엽경채류에 사용되는 차아염소산나트륨 수에 대하여 미생물적 안전성을 평가하고자 수행되었다. 비병원성 대장균과 장출혈성 대장균의 칵테일(E. coli O157:H7)을 엽경채류(초기 균수 7-8 log CFU/g)에 인위적 으로 오염시킨 후 차아염소산나트륨을 5분간 침지 후 흐 르는 물에 3번 씻어서 생균수를 측정하였다. 실험 결과 초 기 오염물질에 비해 살균효과가 1-2 log CFU/g 저감화하 여 대조군에 대해 유의적인 차이가 있었다(P<0.05). 잎채 소의 특성에 따라 약간의 차이가 있었는데 표면적이 클수 록, 덜 거칠고 잎이 부드러울수록 살균효과가 높았다. 200 mg/kg으로 처리하였을 때 100 mg/kg에 비해 0.1-0.3 log CFU/g만큼 효과가 더 감소하였으나 농도 증가에 따 른 유의적 차이는 없었다(P>0.05). 그러므로 학교급식위생 관리지침에서 제시한 기준 이상으로 차아염소산나트륨 농 도를 높이는 것은 불필요하다고 판단된다. 그러나 잎채소 는 일반적으로 미생물의 초기 오염도가 높기 때문에 차아 염소산나트륨 처리만으로는 안전한 수준의 저감을 달성하 기 어려워 생물학적 위험이 잔존한다. 따라서 여름철에 가 열하지 않은 잎채소의 대체 조리방법을 개발하는 것이 안 전성에 보다 효과적인 것으로 판단된다.
This study investigated the effect of the simulated refrigerated distribution environment on the quality characteristics of green lettuce and ground meat. The simulated refrigerated distribution conditions were as follows: (A) the door was not opened while storing the product in the refrigerator, (B) the door was opened for 20 s every 10 min, and (C) the door was opened for 1 min every 10 min (C). In A, B, and C conditions, the bottom temperature was higher, and the average temperature and temperature deviation of the inside of the packaging box, green lettuce, and ground meat increased according to door opening time. According to simulated refrigerated distribution conditions, food qualities such as browning index, total chlorophyll content, and vitamin C content in green lettuce, moisture content, water holding capacity, and volatile basic nitrogen in ground meat were changed.
In recent years, macroalgal bloom occurs frequently in coastal oceans worldwide. It might be attributed to accelerating climate change. “Green tide” events caused by proliferation of green macroalgae (Ulva spp.) not only damage the local economy, but also harm coastal environments. These nuisance events have become common across several coastal regions of continents. In Korea, green tide incidences are readily seen throughout the year along the coastlines of Jeju Island, particularly the northeastern coast, since the 2000s. Ulva species are notorious to be difficult for morphology-based species identification due to their high degrees of phenotypic plasticity. In this study, to investigate temporal variation in Ulva community structure on Jeju Island between 2015 and 2020, chloroplast barcode tuf A gene was sequenced and phylogenetically analyzed for 152 specimens from 24 sites. We found that Ulva ohnoi and Ulva pertusa known to be originated from subtropical regions were the most predominant all year round, suggesting that these two species contributed the most to local green tides in this region. While U. pertusa was relatively stable in frequency during 2015 to 2020, U. ohnoi increased 16% in frequency in 2020 (36.84%), which might be associated with rising sea surface temperature from which U. ohnoi could benefit. Two species (Ulva flexuosa, Ulva procera) of origins of Europe should be continuously monitored. The findings of this study provide valuable information and molecular genetic data of genus Ulva occurring in southern coasts of Korea, which will help mitigate negative influences of green tide events on Korea coast.
Objectives of this study were to propose an optimal fertilization method of Chlorella and to evaluate its effects on growth of green pepper. Chlorella fusca strain was propagated and used in the experiment. As for treatment, drenching method (DM), foliar fertilization (FF), drench and foliar fertilization combination (DM + FF), and untreated control (CO) were used. Plant height of green pepper was higher in the CO treatment than in chlorella fertilized treatments. Chlorella fertilization inhibited stem growth of green pepper. Chlorophyll contents of green pepper leaves were higher in the DM + FF treatment. Yields were the higher in DM and DM + FF treatments than in other treatments. Vitamin C content was the highest in the DM + FF treatment. These results showed that Chlorella fertilization could increase the growth, yield, and bioactive substance content of green pepper. The Chlorella fertilization method could be applied to other crops. By applying this technology to the farmer, it is possible to increase income and supply healthy and safe high-quality agricultural products to consumers.
In recent years, ESG activities (Environment, Social and Governance) have been paid more and more attention by enterprises and their stakeholders in various countries. China is the largest developing country in the world. The ESG performance of Chinese listed enterprises helps to understand the shortcomings of their sustainable development ability and further enhance the firm value. Moreover, the interaction effect between green innovation investment and ESG activities is of great significance for enterprises to balance the resource allocation between the two factors in the future. Taking listed Chinese manufacturing companies from 2011 to 2020 as an example, this study investigates the influence of ESG activities on financial performance and non-financial performance, and tests the moderating role of green innovation. Our results show that: (1) ESG performance has a negative impact on financial performance; (2) ESG performance has a positive impact on non-financial performance; (3) Green innovation can positively adjust the negative impact of environmental activities on financial performance. However, it will enhance the negative impact of governance activities on financial performance. The interaction effect between green innovation and social activities on corporate financial performance is a substitution effect; (4) With the improvement of green innovation level, the positive impact of ESG overall performance and environmental performance on corporate reputation will also be suppressed.
Ethyl formate (EF) is a potent fumigant replacing methyl bromide. The use of EF is limited to a quarantine process. Appling EF to agricultural field as a safe insecticide in greenhouse give us valuable benefits including less residual concern. In this regard, residual pattern after EF fumigation in greenhouse should be undertaken. In the previous study, we have established agricultural control concentration of EF to control pests in a greenhouse. EF was fumigated at 5 g m-3 level for 2 h. The concentration of EF inside a greenhouse was analyzed to be 4.1-4.3 g m-3 at 30 min after fumigation. To prepare an analytical method for residues in cucumber crops and soil in the greenhouse, the limit of detection (LOD) of the method was 100 ng g-1 and the limit of quantitation (LOQ) of this method was 300 ng g-1. R2 values of calibration curves for crops and soil were 0.991-0.997. In samples collected immediately after ventilation, EF concentration was determined to be below LOQ level. In addition, EF level was below LOQ in samples collected at 3 h after ventilation except that leaf samples of melon during the flowering period showed a level of 1,068.9 ng g-1. Taken together, these results indicate that EF used in quarantine can be applied to agricultural fields without residual issue as an effective fumigant for insect pest control.
With the aim to fabricate flexible, mobile, and low-energy powered electronics, laser treatment of paper-based materials from carbon, cellulose, and natural products may be viable as one of the strategies to achieve this objective as it potentially provides a sustainable and precise patterning of a graphene-based circuit for various emerging electronic applications, such as sensor, robot, energy, and memory devices. Irradiation of high-energy beam for induction of porous-rich graphene or reduction of graphene oxide is easily accomplished from a commercially available laser machine with various laser sources, power, and pulse number setting. Moreover, the process itself can easily be adapted in the various manufacturing sectors due to the technology’s maturity status and its ability to be computer programmed. In comparison to environmental-benign polymer, the selection of paper as a substrate for electronics may introduce a new idea into the design possibility of electronic devices since the paper is not only thin, lightweight, biodegradable, and mechanically stable, but is also able to be assembled into another form and shape simply by traditional origami and kirigami technique for many applications. Here, in this work, recent laser processing strategies for the preparation of graphene either from graphitization of cellulose or deoxygenation of graphene oxide for green electronics are reviewed with brief coverage of the deposition technique of graphene oxide paper prior to laser annealing and discussion on the emerging relevant electronics field that benefitted greatly from the laser-assisted fabrication. To conclude the literature study, a remaining challenge, and prospective outlooks of laser writing of graphene on paper are also highlighted.
The green body of WC-Co cemented carbides containing polymeric binders such as paraffin, polyethylene glycol (PEG), and polyvinyl acetate (PVA) are prepared. The green density of the WC-Co cemented carbides increases with the addition of binders, with the exception of PVA, which is known to be a polar polymeric substance. The green strength of the WC-Co cemented carbides improves with the addition of paraffin and a mixture of PEG400 and PEG4000. In contrast, the green strength of the WC-Co does not increase when PEG400 and PEG4000 is added individually. The compressive strength of the green body increases to 14 MPa, and the machinability of the green body improves when more than 4–6 wt% paraffin and a mixture of PEG400 and PEG4000 is used. Simultaneously, the sintered density of WC-Co is as high as 99% relative density, similar to a low binder addition of 1–2 wt%.