Radioactive waste is typically disposed of using standard 200 and 320 L drums based on acceptance criteria. However, there have been no cases evaluating the disposal and suitability of 200 L steel drums for RI waste disposal. There has been a lack of prior assessments regarding the disposal and suitability of 200 L steel drums for the disposal of RI waste. Radioactive waste is transported to disposal facilities after disposal in containers, where the drums are loaded and temporarily stored. Subsequently, after repackaging the disposal drums, the repackaged drums are transported to disposal facilities by vehicle or ship for permanent disposal. Disposal containers can be susceptible to damage due to impacts during transportation, handling, and loading, leading to potential damage to the radiation primer coating during loading. Additionally, disposal containers may be subject to damage from electrochemical corrosion, necessitating the enhancement of corrosion resistance. Metal composite coatings can be employed to enhance both abrasion resistance and corrosion resistance. The application of metal composite coatings to disposal containers can improve the durability and radiation shielding performance of radioactive waste disposal containers. The thickness of radioactive waste disposal containers is determined through radioactive shielding analysis during the design process. The designed disposal containers undergo structural analysis, considering loading conditions based on the disposal environment. This paper focuses on evaluating the structural improvements achieved through the implementation of metal composite coatings with the goal of enhancing corrosion and abrasion resistance.
The operation time of a disposal repository is generally more than one hundred years except for the institutional control phase. The structural integrity of a repository can be regarded as one of the most important research issues from the perspective of a long-term performance assessment, which is closely related to the public acceptance with regard to the nuclear safety. The objective of this study is to suggest the methodology for quantitative evaluation of structural integrity in a nuclear waste repository based on the adaptive artificial intelligence (AI), fractal theory, and acoustic emission (AE) monitoring. Here, adaptive AI means that the advanced AI model trained additionally based on the expert’s decision, engineering & field scale tests, numerical studies etc. in addition to the lab. test. In the process of a methodology development, AE source location, wave attenuation, the maximum AE energy and crack type classification were subsequently studied from the various lab. tests and Mazars damage model. The developed methodology for structural integrity was also applied to engineering scale concrete block (1.3 m × 1.3 m × 1.3 m) by artificial crack generation using a plate jacking method (up to 30 MPa) in KURT (KAERI Underground Research Tunnel). The concrete recipe used in engineering scale test was same as that of Gyeongju low & intermediate level waste repository. From this study, the reliability for AE crack source location, crack type classification, and damage assessment increased and all the processes for the technology development were verified from the Korea Testing Laboratory (KTL) in 2022.
Molten salt reactor (MSR) uses fluoride or chloride based molten salt as a coolant of the system, and fuel materials are dissolved in the molten salt, therefore it can be act as both coolant and nuclear fuel. A few issues have arisen from early-stage research and development program of MSR from Oak Ridge National Laboratory, including corrosion of structural materials and fission product management. For investigating the effect of additives on corrosion of structural materials, Mg(OH)2 and MgCl2*6H2O are added into the NaCl-MgCl2 eutectic salt. Prepared chloride salt is injected into the autoclave in the glove box, as well as corrosion coupons for candidate structural materials for molten chloride salt reactor, SS316, Alloy 600, and C-276 are also prepared. The temperature is set as 700°C. After 500 h corrosion experiment, the samples are taken out from the autoclave, and they are analyzed with scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). SS316 samples show weight loss with all salt conditions, while Alloy 600 and C-276 show weight gain after the corrosion experiment.
A lot of CANDU Spent Fuels (CSFs) have been stored in spent nuclear fuel pools and dry storage facilities. In accordance with the enhanced nuclear regulations, the initial characteristics of CSF should be inspected to ensure the integrity of CSF and the reliable operation of storage system before loading it into a cask for long-term dry storage. For the inspections, an initial characteristics measurement equipment was designed, which is used for Pool-Side Examination (PSE) in the spent fuel pool of the pressurized heavy water reactor nuclear power plant. Measurements using the equipment consist of non-contact inspections and contact inspections. The non-contact inspections do not affect CSF integrity, whereas the integrity of CSF can be reduced during the contact inspections under abnormal operating conditions because the probe of equipment may apply specific loads to the CSF. Therefore, the structural integrity evaluations of equipment and CSF are performed using Finite Element (FE) analyses for four combinations based on two abnormal conditions and two probe positions. The used abnormal conditions are the pressing load condition and the scratching load condition, and two probe positions are the center and bottom of the fuel rod in the longitudinal direction, respectively. In this evaluation, the bottoms of the fuel rod or CSF are defined as the regions facing the bottom surface of equipment. The analysis of the pressing load condition is performed by pressing the probe of the equipment in radial direction of the CSF fuel rod. That of the scratching load condition is carried out by applying a specific radial load to the CSF fuel rod using the probe and then applying the load to the surface of the fuel rod while moving axially along the surface. All combinations are analyzed considering geometric, boundary and material non-linearity under the dynamic load, which is dependent on the equipment operating velocity. The stresses of CSF and equipment components were obtained from these analyses. The maximum stress of each component was generated at the combination on the scratching load condition for the bottom position among the four combinations. The obtained maximum stresses are lower than the yield stress for each component material. Also, the CSF is not overturned due to the support plate of the equipment in all analyses. Therefore, the structural integrity and safety of the equipment and the CSF are maintained under abnormal operating conditions during the inspection using the initial characteristic measurement equipment.
산화아연 막은 투명한 전도성 물질로써 다양한 분야의 광전자소자에 이용되고 있다. 그러므로 산화아연 막의 특성을 규명하는 것은 광전자소자의 성능을 높이는데 매우 중요한 역할을 할 것이다. 본 논 문에서는 이러한 산화아연 막을 용액공정 기반으로 제작하여 형태적, 구조적 특성을 평가하고자 한다. 구 체적으로는 졸-겔 방법을 반복적으로 시행하여, 시행 횟수에 따른 산화아연 막의 물성의 변화를 관찰할 것 이다. 일정한 용액 조건하에서, 5회의 반복적인 졸-겔 방법을 시행한 결과 결정화가 진행되는 것을 확인하 였다. 7회 이상에서는 원소 구성 및 결정화도가 특정 값에 수렴하는 경향을 보였다. 최종적인 산화아연 막 의 평균결정의 크기는 약 10.7 nm 정도로 계산되었다. 본 연구를 통해 최적의 결정화를 보이는 공정횟수 는 7회였다. 본 연구 결과 및 방법론은 다양한 용액공정 변수를 가변시키면서 적용할 수가 있고 최적의 공 정조건을 확립하는데 기여할 것으로 기대한다.
With the advancement of optical design and manufacturing technology, optical components have found diverse applications, spanning from semiconductors to the aerospace industry. A reflective mirror is a basic component in optics and plays a crucial role as the medium to reflect light. In this paper, a large mirror with a 700mm diameter was designed as a primary mirror using fused silica. The rear side of the mirror was subdivided into several equal angles, and neighboring vertices on the circumference were connected to establish a polygon. Accordingly, the geometric shapes of triangle, square, pentagon, and hexagon were formed. Furthermore, the mirror structure was strengthened by employing straight lines passing the vertices and the center of the circle. Based on the finite element analysis, deformations of the mirrors caused by the gravitational force were evaluated. Weight and deformation of the mirror structures were compared and analyzed to find a proper structure to reduce weight and deformation. This paper, therefore, presents a structural solution aimed at reducing the weight and deformation of a large aperture mirror induced by gravitational forces, thereby suggesting a geometric shape based structure to reduce surface deformation of a mirror.
In this study, In this study, structural analysis of a fuel tank for an SUV (sports utility vehicle) was performed for crack prevention design. Reservoir tank analysis was conducted for crack prevention design, and improvement measures for weak areas were discovered and reflected in the design. Pressure analysis was performed on the existing model to analyze weak areas. As a result of analysis through various design changes, it was found that the strength problem of the reservoir tank was due to the discontinuity of the rib inside the tank, and to improve this, it was necessary to minimize the discontinuity section.
This study examined the structural characteristics of the royal tomb equipped with only rail stones in the early Joseon Dynasty. Bongneung(封陵: the burial mound of royal tomb) equipped with only rail stones was constructed from 1468 to 1632. During this period, Hyeongung(玄宮: the underground chamber for the coffin of the king or queen) was constructed with lime. When the Hyeongung is completed, the soil is covered with a thickness of 1 foot parallel to the ground surface. On top of that, as the base of the Bongneung, the rail ground stone is constructed with a height of about 1.5 to 2 feet. The inside of the rail ground stone is also firmly filled with soil. On top of this, semicircular lime is installed with a convex center. Lastly the soil is divided and compacted several times to form a hill, and then covered with grass to complete the Bongneung. The notable feature is that between the Hyeongung made of lime and the Bongneung made of soil, the rail ground stone serves as a stylobate with the inside compacted by the soil.
This paper described a method for analyzing the structural performance of a metal container used for disposing radioactive waste generated during the decommissioning of a nuclear power plant, and numerical analysis results of a method for reinforcing the container. The containers to be analyzed were those that can be used in near-surface and landfill disposal facilities scheduled to be operated at the Gyeongju radioactive waste disposal facility. Structural reinforcement of the container was performed by lattice reinforcement, column reinforcement, and bottom plate reinforcement. Accordingly, a total of 14 reinforcement cases were modeled. The external force causing damage to the container was set equivalent to the impact of a 9-m fall, accounting for the height of the vault at the near-surface disposal facility. The reinforcement methods with a high contribution to the structural performance of the container were concluded to be lattice and column reinforcements.