RAPD 마커를 이용하여 인삼 품종 및 육성계통의 유전적 다양성 및 유연관계를 분석한 결과는 다음과 같다.
1. 총 130개의 primer 중 polymorphism을 나타내는 70개의primer를 선발하였고, 그 중 재현성이 있으면서 polymorphism이 높은 25개의 primer를 선발하였다. 증폭된 DNA 단편의수는 189개이고, PCR 산물은 100 ~ 2,800 bp 범위로 증폭되었다.
2. 각 primer에 의해 증폭된 DNA 단편의 수는 3개 ~ 17개로 다양하였으며, primer 한 개당 평균 7.6개의 DNA 단편이증폭되었다. OPD19 primer를 이용한 유전분석 결과, 총 5개의 유전양상이 나타났는데, 약 500 ~ 1,300 bp의 증폭산물에서품종 및 계통 간 유전적 다형성을 나타냈다.
3. 선발된 primer별 대립인자는 최소 1.33에서 최대 2.00의 범위였고, 평균 1.709이었다. primer별 유전적 다양성은 OPD15가 가장 높았고, OPF2가 가장 낮은 값을 나타내었다. 본 연구에서 분석에 이용된 25개의 RAPD primer 중에서 D15, D19, B5, A19등은 인삼 품종과 계통에서 비교적 높은 수의 대립단편과 높은 유전적 다양성 값을 나타내는 primer였다.
4. 유사도 계수 0.98을 기준으로 24개의 품종 및 계통을 대상으로 군집분석을 수행한 결과, 미국에서 수집 육성된 G04116과 국내 품종인 천풍, 연풍 그리고 국내 육성 계통인 G04009, G04026, G04069, G04084는 그룹을 형성하지 않았고, 17개의 품종 및 계통은 2그룹으로 분류되었다. I 그룹에는 고풍, 금풍과 12계통(85%), II 그룹에 3계통(15%)이 포함되었다.
Background : Recently, there is a urgent demand for development of new varieties with enhanced resistance to various biotic/abiotic stresses. In order to develop ginseng varieties with such traits, systematic breeding program and comprehensive field studies are prerequisite.
Methods and Results : ‘Jinwon' seeds were collected in 2003 from the farmer field of Pocheon. Physiological investigation and propagation were conducted from 2008 to 2010. It was given the name 'Eumseong No. 11 through the observed yield trial from 2011 to 2013 and local adaptability was carried out from 2014 to 2017. All phenotypes including agronomic characteristics, seed yield, and physiological response to biotic/abiotic stresses were investigated according to the ginseng GAP and UPOV guidelines. Red leaf and red berry at maturing stage were observed. The time of emergence, flowering and berry maturity of the ‘Jinwon’ were faster than those of ‘Chunpoong’. Stem length of ‘Jinwon’ was longer than that of ‘Chunpoong’, whereas stem diameter was thicker than that of ‘Chunpoong’. Main root length was similar but main root diameter is thicker than that of ‘Chunpoong’. The yield performance of this variety was 576 ㎏/10 a in local adaptability test for two years, which is 9% higher than that of ‘Chunpoong’. ‘Jinwon’ showed strong resistance at high temperatures.
Conclusion : Our study demonstrated that ‘Jinwon’ is an ideal variety with heavier root weight and enhanced stress resistance and contribute will enhance biotic/abiotic stress resistance and increase the farmers' income.
Background : Replant failure of ginseng is caused by soil-born pathogens causing root rot such as Cylindrocarpon destructans and Fusarium solani. Dazomet are widely used as soil fumigant to solve soilborne problems, and the degradation intermediates are toxic to nematodes, fungi, bacteria, insects and weeds.
Methods and Results : The effects of cultivation of green manure crop, maize before and after soil fumigation on the control of ginseng root rot disease were compared using soil of field where 6-years-old ginseng was harvested. Fumigant (dazomet) were used for soil fumigation in May and September, respectively. Maize was grown for soil management before and after soil fumigation. Maize cultivation after May fumigation was delayed the sowing day by 15 days, and the fresh and dry weight decreased significantly. Maize cultivation after May fumigation increased pH but decreased EC, NO3, P2O5, and K significantly. Maize cultivation after May fumigation decreased fungi population and ratio of fungi and bacteria. Growth of 2-years-old ginseng was improved and the incidence of ginseng root rot was significantly decreased by maize cultivation after May fumigation. After harvesting 2-years-old ginseng, the population of Cylindrocarpon destructans was not different among treatments, but Fusarium solani showed a significant increase in September fumigation after maize cultivation.
Conclusion : Maize cultivation after soil fumigation was effective in inhibiting ginseng root rot by improvement of mineral composition and microorganism in soils.
Background: The cultivation of ginseng (Panax ginseng C. A. Meyer) in greenhouses could reduce the use of pesticides and result in higher yield; however, construction costs are problematic. The adaptation of direct-sowing culture in greenhouses could reduce the cost of ginseng production. Methods and Results: To improve seedling establishment in direct-sowing culture, effects of sowing density (SD), number of seeds sown per hole (SN), and thinning (TH) treatment on the root yield were investigated after 3 years of seeding. The emergence rate was significantly influenced by SD, but not by SN or TH. Damping-off and rusty roots increased with an increase in SN with diminishing effects of SN on seedling establishment. Root weight and diameter were affected by SD, SN, and TH, however, there were no statistical significances. The total number of roots harvested per unit area increased with increasing SD and SN, and the weight of roots was affected by SD, but not by SN or TH. Conclusions: Multi-seed sowing per hole and/or thinning might not be an efficient method for the direct-sowing culture of ginseng. The SD for direct seeding culture in greenhouses should be approximately 33 - 42 seeds/㎡ for an optimum yield of 3-year-old ginseng.
Background: In Korea, 6-year-old ginseng root is economically more important than 4 or 5-year-old roots. In general, the root age is determined by counting the number of stem vestiges. However, this method does not accurately estimate ginseng root age. Methods and Results: In this study, the stem vestige counting method was used to survey a total of 18,395 fresh ginsengs cultured in 2014, and 2015, to determine the accuracy of this method. The proportion of 6-year-old roots, with more than four stem vestiges, was 46.1% in 2014. For the cultivar Chunpoong cultivated in Eumseong and Goesan countries in 2015, the proportion of more than four stem vestiges was 55.9%, and 43.5%, respectively. The proportion of more than four stem vestiges for the Gumpoong cultivated in Eumseong and Yangpyeong countries was 67.0%, and 35.1%, respectively, whereas that for the cultivar Yunpoong was 36.0% and 61.0%, respectively. Moreover, it was confirmed that differences in the levels of Rg1 will enable root age determination. Conclusions: Root age determination by the stem vestige test was found to differ depending on the environmental and cultivation conditions. To determine the age of ginseng roots, a comprehensive method, such as counting stem vestiges and evaluating differences in ginsenoside levels, should be applied.
Background : Ginseng (Panax ginseng C.A. Meyer) is one of the most important medicinal plants in Korea, but its yields are often reduced by a variety of root pathogens. The root rot of ginseng is a destructive soil-borne disease caused by Cylindrocarpon destructans (teleomorph: Ilyonectria radicicola). Methods and Results : Ilyonectria radicicola and its Cylindrocarpon-like anamorph represent a species complex that is commonly associated with root rot disease symptoms on virulence. During the course of this study, several species could be distinguished from I. radicicola sensu stricto based on morphological and culture characteristics. As results of investigated culture characteristics, optimal temperature for mycelial growth of isolates were 20℃, and colony pattern and color were slightly different on PDA. Isolates of I. radicicola were analyzed for their genetic relatedness based on several genes and microsatellite region. I. radicicola group was divided into two small groups. Conclusion : Therefore, we were able to confirm pathogenicity and genetic difference between the isolates in each of the groups of the pathogen. Among these isolates, 21.5% were classified as highly virulent and 78.5% were weakly virulent. *(Corresponding
Background : This study aimed to investigate the effect of elevated temperature by climate change on growth and ginsenoside contents of Korean ginseng, which requires low temperature during growth period. Methods and Results : Yunpoong was transplanted in temperature gradient chamber (TGC) for high temperature treatment and then growth characteristics and ginsenoside contents were investigated by growth period. Stem length, petiole length, leaf length and leaf width were increased as the temperature was higher than Ambient Temperature (Amb), but stalk diameter was decreased and small petiole length, number of petiole and leaf were no significant difference. Root growth, whereas, including length diameter and weight were decreased as the temperature was higher than Amb. Compared with Amb, root length, diameter and weight were decreased by 19.6%, 22.4% and 41.5% at Amb+6, respectively. The higher the temperatures are associated with the more ginsenoside contents. Compared to Amb, total ginsenoside contents were increased by 68% and 78% at Amb+4℃ and Amb+6℃, respectively. Almost all contents of individual ginsenoside, with the exception of Rg1, made a significant difference. Conclusion : When temperatures rises during growth period, the growth of ginseng was decreased but, ginsenoside contents were increased.
Background : The fungus Cylindrocarpon destructans (Zins) Scholten is the cause of root rot in many ginseng production areas. Root exudate composition and quantity vary in relation to plant nutritional status, but the impact of the differences on rhizosphere microbial communities is not known. Methods and Results : Five kinds of rotation crops, sudan grass soybean peanut sweet potato, perilla were grown for one year in ginseng garden harvested 6-year-old ginseng. The ratio of gram-negative bacteria, fungi, bacteria, total microbial biomass, aerobic/anaerobic microbes were increased by rotational crop cultivation, while the ratio of actinomycetes and the ratio of saturated to unsaturated fatty acids were decreased. The increase in the fungal density or the increase in the proportion of fungi to the bacteria tended to increase the incidence of root rot, but there was no significant difference. The yield of ginseng root showed a highly significant negative correlation with actinomycetes. The correlation between the soil chemical properties and the incidence of root rot was analyzed by cultivating 23 kinds of green manure crops for one year in field where cultivated ginseng continuously. The survival rate of ginseng showed a highly significant positive correlation with soil acidity and a highly significant negative correlation with nitrate nitrogen, and a significant negative correlation with soil salt concentration. Conclusion : Rotation crops improved soil microbial communities, lowered the rate of fungi and increased the proportion of bacteria, the survival rate of ginseng was significantly correlated with soil acidity, nitrate nitrogen and soil salinity.
Background: Some plants have harmful effects on fungi and bacteria as well as plants. Incorporating into soil as green manures are effective in reducing population densities of soil pathogens. Methods and Results: Twenty-three species of green manure crops were cultivated after the harvest of 6-year-old ginseng and then incorporated green manure into the soil at the flowering stage. The following year, the root rot ratio of 2-year-old ginseng and soil chemical properties were investigated. Sorghum sudanense, Helianthus annuus, and Helianthus tuberosus were relatively high in dry matter production. Without incorporating green manure into soil, NO3, EC (electric conductivity) and K were decreased by 95%, 79% and 65%, respectively. When green manure was incorporated to soil, P2O5 and NO3, were reduced by 41% and 25%, respectively. The survived root ratio of 2-year-old ginseng were significantly increased by 56.2%, 47.5%, and 47.3% in Sorghum sudanense, Ricinus communis and Helianthus tuberosus, respectively, In addition, there was a significant increase in Secale cereale, Chrysanthemum morifolium, Atractylodes macrocephala, and Smallanthus sonchifolius. The survived root ratio of ginseng showed a significant positive correlation with soil pH and a negative correlation with NO3, and EC. Conclusion: Cultivation of Chrysanthemum family mainly using rhizome and root as green manure was effective for root rot disease of ginseng.
Background : Ginseng widely cultivated as a major medicinal herb in Korea, is economically important crop for farmer. Ginseng root disease caused by soil borne pathogens is main factors restricting the quantity and quality of ginseng. The disease can result in harvest loss of up to 20~70% and limits the replanting of ginseng under same field for long time. The traditional control method of agrochemical use is not recommend to control soil borne disease because of difficulty in use and unstable effect. The objective of this study was to evaluate the efficacy of several antagonistic microbes for developing biological control method of ginseng root rot. Methods and Results : To select biocontrol agents against ginseng soil borne disease, several bacteria were isolated from ginseng root and rhizosphere soil evaluated in vitro screening of antifungal bacterial against ginseng root pathogens. Two antagonistic bacteria, ES17 and CJ4, showed the strongest inhibition effect against ginseng root pathogen. In the pot experiment under greenhouse conditions, ginseng seedling dipped in bacterial suspension at inoculum density of 106 cfu/ml for 1 hour were planted in pot containing inoculum. Control effect was examined depend on disease severity index at 30 days after inoculation. Ginseng root treated with CJ4 and ES17 isolate reduced root rot disease development on the ginseng root with degrees of control efficacy of 85% and 70%, respectively. Conclusion : Two biocontrol agent, Burkholderia ambifaria CJ4 and Paenibacillus strain ES17, had strong antifungal efficacy against ginseng soil borne pathogens. These results obtained from in vitro test and pot experiment suggest the potential applicability of the biocontrol agent to control ginseng root rot caused by various soil borne pathogens.
Background : Ginseng (Panax ginseng C.A. Meyer) is one of the most important medicinal plants in Korea, but its yields are often reduced by a variety of root pathogens. The root rot of ginseng is a destructive soil-borne disease caused by Cylindrocarpon destructans (teleomorph: Ilyonectria radicicola). To monitor contamination with C. destructans in ginseng harvested in 2015 were sampled from 57 different growing fields. The spore number of C. destructans was quantified by use of a specific primers and selective media (radicicol) in soils of ginseng fields. Methods and Results : The ginseng samples were surface-sterilized and placed on potato dextrose agar plates for 7 day incubation at 20℃. Emerging fungal colonies were counted primarily based on colony and conidia morphology. Further species level identification was confirmed by ITS rDNA sequencing. For quantification of the soil-borne C. destructans, the genomic DNA was extracted from the soil using a NucleoSpin soil kit (MN, Germany). Density of C. destructans was determined by species specific real time PCR (qPCR). The qPCR was completed by running a melting curve analysis. Conclusion : The C. destructans associated with root rot disease of ginseng were detected in more than 60% in pyeongtaek-1, pochenon-1, jecheon-1, chungju-1 and jinan-4. As results of the study, the correlation between pathogen density and identification clearly clarified in the soil.
Background : This study was carried out to distribute superior cultivars to farmers by analyzing growth characteristics of ginseng and effectively set the target for breeding by investigating annual agronomic characteristics of ginseng. Methods and Results : As a plant materials, Chunpoong (CP), Yunpoong (YP), Gopoong(GP), Gumpoong (GU) and Sunun (SU) were transplanted in Eumseong (ES), Geumsan (GS) and Yeoncheon (YC) on March 2013. Cultivation and management were conducted on the basis of the standard guidelines. According to stem and petiole by region, YC represent the largest stem diameter, leaf length and petiole length of cultivars, followed by those in ES and those in GS. Leaf growth of cultivars was overall the best in YC. Although CP had long and narrow leaves in all regions, YP and SU had short and narrow leaves. Root weight of all cultivars was the best in YC, but there was no significant differences by them. Growth of CP, YP and GP was generally good in ES. Growth of cultivars was relatively even in GS, but it was poor compared to cultivars which were cultivated in ES and YC. Conclusion : There were considerable differences in root growth of cultivars. However, this results suggest that CP of 4-year-old is produced stably in some regions because it had a small coefficient of variation.
Background : Stable ginseng production is highly dependent on specific climate conditions. Recently, ginseng yield and quality are negatively affected by climate changes, particularly global warming. Thus, it is imperative to apply a new systematic cultivation method and to develop new varieties with enhanced heat resistance to cope with elevated temperatures. Up to date, ginseng breeding program has mainly focused on the quantity and process ability of red ginseng. New varieties with increased resistance to diverse abiotic stresses need to be developed. Methods and Results : In this study, 13 varieties and 100 germplasms were screened for resistance to heat stress. To measure heat resistance, seedlings were transplanted to a pot 3 times in threes. Two months later, the pot was placed in a temperature chamber at 46℃ for 1 hour, a critical condition that ginseng appears to stop cellular respiration. After waiting for 1 day, the pot was examined for survival rate and fluorescent reaction. Fluorescent reaction was tested according to Nedbal et al. (2000) and Park et al. (2010) and with an image fluorometer. After testing chlorophyll fluorescent reaction, Fm/Fo, Fv/Fm and Rfd were used as screening indices for high temperature resistance. It was found that the adequate values for Fm/Fo, Fv/Fm and Rfd were over 2.2, over 0.55 and over 0.8, respectively. Also, the degree of the above-ground damage is investigated in the 4-year old field. Under our heat stress conditions, susceptible varieties (Chunpoong) and germplasm lines showed drooping and wilting leaf phenotypes, whereas the leaves of a resistant line (named Eumseong 11) remained healthy. Eumseong 11 had the highest values with 2.3, 0.61 and 0.98 in fluorescent test. In addition, compared to the susceptible lines which were wilted in 4-year old field, no detrimental phenotypes were observed in Eumseong 11. Conclusion : ‘Eumseong11’ was selected as a superior line with increased resistance to heat stress. We are now testing how Eumseong11 responds to other abiotic stresses. Our effort will contribute to increase the farmers' income.
Background : The P. ginseng breeding line G07006, was selected for salt tolerance through salinity screening of mature leaves at the NIHHS of the RDA in 2014-2016. However, it is difficult to maintain a genetically stable breeding line of cross-pollinating crop in the field. Therefore molecular marker required to identify and maintain breeding line G07006. Methods and Results : DNA was extracted following the CTAB DNA extraction protocol (Doyle and Doyle, 1987) with modifications. A pair-end (PE) library was constructed and sequenced using an Illumina MiSeq platform by Lab Genomics, Inc. (Seongnam, Korea). Approximately 4.0 Gb of sequencing data were obtained, and de novo assembled by a CLC genome assembler(v. beta 4.6, CLC Inc., Rarhus, Denmark). The complete chloroplast(CP) genome size is 156,356 bp, including two inverted repeats (IRs) of 52,060 bp, separated by the large single-copy (LSC 86,174 bp) and small single-copy (SSC 18,122 bp) regions. This CP genome encodes 114 unigenes (80 protein-coding genes, four rRNA genes, and 30 tRNA genes), in which 18 are duplicated in the IR regions. Conclusion : This complete chloroplast DNA sequence will provide conducive to discriminate line G070006 (salt-tolerant) and further enhancing genetic improvement program of this important medical plant.
Background : Ginseng root rot caused by soil-borne pathogens, Cylindrocarpon destructans and Fusarium solani, is a major factors of replanting failure in ginseng cultivation. Some of the phenolic compounds detected in the soil of commercially cultivated American ginseng could inhibit the seed germination and seedling growth of American ginseng. Our study is to investigate the causes of replanting failure of ginseng by overhead flooding treatment and soil incorporation of ginseng fine root in soil infected with root rot pathogens. Methods and Results : To make soil occurring continuous cropping injury, 2-year-old ginseng infected with Cylindrocarpon destructans replanted in soil cultivated ginseng for 5 years. Treatment are as follows: 1) control, 2) water of 2ℓ was irrigate infected soil of 20ℓ, 3) ginseng fine root of 20g was mixed with infected soil of 20ℓ. Soil pH was increased, while other inorganic components were significantly reduced by overhead flooding treatment. Soil incorporation of ginseng fine root decreased soil pH, but increased EC, NO3, P2O5 and K, meanwhile, did not affected changes in organic matter, calcium, magnesium, sodium. Irrigation treatment in soil occurring replanted failure promoted distinctly above-ground growth of ginseng, and inhibited the occurrence of root rot because inorganic nutrient like NO3, P2O5 and K were decreased to optimal levels, and the density of soil pathogens could be reduced. Growth of ginseng was not inhibited, while root rot was promoted by soil incorporation of ginseng fine root. Conclusion : Irrigation treatment was effective in promoting the growth of ginseng and inhibited root rot distinctly. Ginseng fine root remaining in the soil after ginseng harvest did not affect the above-ground growth of ginseng, while promoted the occurrence of root rot.
Background : Excessively high concentration of sodium ion causednutrient deficiency and significantly decrease growth. This study was carried out to determine the limiting concentration range of sodium ion in the soil of ginseng field.
Methods and Results : The growth of the ginseng cultivar Chunpoong reduced with increase in salinity, and the rate of growth reduction was higher in shoots than that of roots. Particularly, ginseng plants cultivated at high level of nitrate nitrogen or sodium may suffer delayed development and stunted growth. Chlorophyll damage occurred on the leaves of ginseng planted in relatively high levels (> 0.2 c㏖+/㎏) of sodium ion, as determined by the fluorescence reaction. The incidence of physiological disorder in ginseng cultivated at 249 sites was correlated with the concentration of sodium ion in the soils. About 74% of ginseng fields in which physiological disorders occurred had concentrations of sodium ion in soil greater than 0.2 c㏖+/㎏. In contrast, the concentration of sodium ions at 51 of 85 sites where no damage occurred was relatively (0.05 c㏖+/㎏- 0.15 c +/㎏).
Conclusions : The concentration of sodium ion in soil of ginseng fields can be classified into three levels optimum (≤ 0.15), permissible allowance (0.15 - 0.2) and excessive (> 0.2).
This study was conducted to investigate the effects of sowing density, number of seeds sown per hole, andthinning treatment on growth characteristics and disease occurrence in Panax ginseng under direct sowing cultivation in ablue plastic greenhouse. Seedling were grown from 2 or 3 seeds sown, and the healthiest was only retained, while the restwere thinned out at the foliation stage. NO3-N, P2O5, and organic matter content differed significantly between growthconditions in the plastic greenhouse and in conventional shade in the soil. Disease also tended to be higher in the conven-tional shade than in the plastic greenhouse. Plant height and stem length showed an increasing trend with increasing sowingdensity and number of seeds sown per hole. However, these measures noticeably decreased when thinning treatment wasconducted. Growth of the subterranean part of ginseng was not markedly influenced by sowing density, the number of seedssown per hole, or thinning treatment. Root weight, which is an important factor in yield, was significantly affected by thenumber of seeds sown and thinning treatment. Interestingly, root weight tended to be higher in the thinning treatment plotthan the untreated control plot. Damping-off and root rot increased noticeably as the number of seeds sown increased. Dis-ease also tended to be substantially higher in the thinning treatment plot than the untreated control. However, physiologicaldisorder of the plants did not vary with sowing density, the number of seeds sown, or thinning treatment.