Amitriptyline hydrochloride (AMT), a tricyclic antidepressant, is known to exhibit antimicrobial effects against a wide range of bacterial species. This study aims to evaluate the effect of AMT on Brucella (B.) abortus infection in RAW 264.7 cells and ICR mice, which has not yet been clearly characterized. The results showed that all tested concentrations of AMT had no direct bactericidal effect on B. abortus survival at any incubation time point. Interestingly, RAW 264.7 cells pre-treated with a non-toxic high concentration of AMT before B. abortus infection showed a significant reduction in the phagocytosis of B. abortus at 20 min post-infection, compared to untreated cells. However, AMT treatment did not affect the intracellular replication of B. abortus compared to the control cells. Based on the reduced bacterial uptake observed in-vitro, an in-vivo experiment was conducted to assess whether daily oral administration of AMT at a dose of 20 mg/kg could inhibit B. abortus growth in ICR mice. The results showed that AMT treatment slightly increased both organ weights and bacterial loads, suggesting possible systemic effects of prolonged AMT exposure. In summary, these preliminary results provide initial insight into the potential effects of AMT on B. abortus infection both in-vitro and in-vivo. Therefore, further study should focus on dose optimization in-vivo and exploration of the underlying cellular mechanisms involved in AMT-mediated inhibition of phagocytosis during Brucella infection.
Recent global efforts to combat climate change have accelerated, with nations adopting carbon strategies such as carbon taxes and emission trading system (ETS) to support their net-zero commitments. These initiatives enable governments to enforce mitigation while maintaining their dual goal of fostering economic growth. Vietnam, a developing country, has emerged as a proactive participant by launching a national ETS, drawing from international best practices and domestic geographical advantages. This article examines the process and challenges involved in designing and implementing an ETS in Vietnam, exploring the necessary policy frameworks, institutional structures, and market mechanisms. It highlights key considerations such as the selection of sectors and entities to be covered, the allocation of emission allowances, and the establishment of new market management solutions. This article concludes with strategic recommendations to support the development of a successful and sustainable ETS mechanism in developing country like Vietnam.
본 연구는 습도센서에서 Zn-MOF (금속-유기구조)의 개발과 응용에 대해 다루며, 친환경적 합성과 우수한 전기적 특성을 보고한다. 그린 화학의 원리를 이용하여 제작된 Zn-MOF를 유연한 폴리에 틸렌테레프탈레이트 기판 상에 형성된 깍지낀 구조의 전극과 통합하였다. 상대습도가 10%부터 90%까지 증가할 때, 전기적 특성은 42.49 pF에서 370 nF까지 정전용량의 급격한 상승(약 939,322%)을 나타냈다. 또한, 임피던스는 47 MΩ에서 0.072 MΩ까지 약 99.81% 감소하였다. 제작된 습도센서는 반응시간 5초, 복구시간 약 0.7에서 0.9초로 동적으로 반응하였다. 이러한 결과는 Zn-MOF가 고도로 민감하고 반응성이 뛰어난 습도 모니터링할 수 있는 가능성과, 특히 다양한 환경 조건에서 센서의 정전용량성 반응성을 강조 하고자 한다.
Metal additive manufacturing (AM) facilitates the production of complex geometries with enhanced functionality. Among various AM techniques, laser powder bed fusion (LPBF) is distinguished by its precision and exceptional mechanical properties achieved via laser fusion deposition. Recent advancements in AM have focused on combining LPBF with post-processing methods such as cold rolling, high-pressure torsion, and forming processes. Therefore, understanding the forming behavior of LPBF-processed materials is essential for industrial adoption. This study investigates the stretch-flangeability of LPBF-fabricated 316L stainless steel, emphasizing its anisotropic microstructure and mechanical properties. Hole expansion tests were employed to assess stretch-flangeability in comparison to wrought 316L stainless steel. The results demonstrate that LPBF-processed samples exhibit significant anisotropic behavior, demonstrating the influence of microstructural evolution on formability. These findings contribute valuable insights into optimizing LPBF materials for industrial forming applications.
본 연구에서는 국내에서 처음 발견된 Aulacophoroides hoffmanni (Takahashi, 1937)를 최초로 보고한다. 2024년 야외조사에서 한국의 서부 2개 지역의 등나무(Wisteria floribunda (Willdenow))에서 심각한 피해를 주고 있는 A. hoffmanni를 확인하였다. 무시성충의 상세한 형태 기재와 계측값을 제시하였으며, 생체 및 슬라이드 표본 사진을 포함하였다. 이 종은 등나무에 심각한 피해를 주고 있어 관상용 등나무의 주요 해충이 될 것으로 예상된다.
This study aimed to evaluate the effects of different feeding levels of domesticated barnyard millet and imported Bermuda hay on the growth performance and structural development of female and male growing goats. A 4×4 Latin square design was used, involving 8 goats with an average age of 3 months: 4 females and males with an initial body weight (BW) of 10.6 kg and 16.0 kg, respectively. Goats were randomly assigned to 4 dietary treatments: T1 (1.5% BW barnyard millet), T2 (1.5% BW Bermuda hay), T3 (2.0% BW barnyard millet), and T4 (2.0% BW Bermuda hay) over a 22-week period. Results indicated that the highest final body weight (FBW) was significantly observed at the highest feeding level (T4), with females reaching 14.9 kg and males 20.9 kg, while the highest average daily gain (ADG) values were recorded for females in T3 at 75.7 g/d and males in T4 at 81.0 g/d (p<0.05). Dry matter intake (DMI) was highest in the T4 group for both females (437.4 g/d) and males (635.9 g/d), with significant differences observed across treatments (p<0.05), whereas the feed conversion ratio (FCR) showed an improving trend, particularly with a value of 6.0 for females in T4. For structural development, the highest feeding levels led to significant increases in body length, body depth, chest width, and chest girth of both sex. Female and male in T4 achieved body lengths of 53.5 cm and 61.8 cm, and body depths of 45.2 cm and 54.8 cm, respectively. Chest width and girth reached 15.9 cm and 66.5 cm in males, and 13.5 cm and 56.5 cm in females. In conclusion, higher feeding levels, especially with Bermuda hay, may positively influence the growth performance and structural development of goats.
The role of the gut microbiota in colorectal cancer (CRC) development has garnered attention, highlighting probiotics as potential adjuncts in CRC prevention and treatment. In recent years, probiotics and their derivatives have demonstrated mechanisms that may contribute to anticancer properties. This study investigates the cytotoxic effects of Bifidobacterium bifidum KCTC 3357, Lacticaseibacillus rhamnosus KCTC 5033, Limosilactobacillus reuteri VA 103, Bacillus galactosidilyticus VA 107, and Lactococcus taiwanensis VE101 on CT-26 mouse colon carcinoma cells using live cells, heat-killed cells (paraprobiotics), and cell-free supernatants (CFS, postbiotics) through an MTT assay. The results indicate that live bacterial strains, such as KCTC 3357, VA 103, and VA 107, promoted CT-26 cell viability, while heat-killed cells and CFS exhibited dose-dependent cytotoxicity. Inactivated forms of KCTC 3357 and VE 101, as well as CFS at 10 mg/mL concentration of KCTC 5033, VA 103, and VE 101, showed the strongest antiproliferative effects. These findings suggest that non-viable probiotic derivatives, such as paraprobiotics and postbiotics, offer promising therapeutic potential for CRC, providing a safer and more stable alternative to live probiotics. However, further research is required to explore their mechanisms of action, in vivo efficacy, and potential clinical applications.
본 연구는 기능성 화장품 소재 개발을 목표로 효모 유래 MPC의 세포 생리활성을 조사하였 다. 피부 세포주에 처리된 Cu와 Zn 이온 모두 세포 독성이 확인되었지만, 정제된 MPC는 결합된 금속 이온의 세포 독성을 획기적으로 제거하였다. 게다가 특정 농도의 MPC는 대조군과 비교하여 세포 생존 율을 오히려 약 20% 증가시켰다. MPC 중 효모 펩타이드-Cu(YP-Cu)는 UVB 자극으로 유도되는 세포 내 활성산소의 양을 약 30% 정도 유의하게 감소시켰지만, YP-Zn은 영향을 미치지 못했다. 또한, YP-Cu 처리는 피부 세포에서 콜라겐 유전자의 발현량을 2배 증가시켰고, 프로콜라겐 분비량은 1.7배 증 가시켰으며, UVB 자극에 의한 콜라겐 유전자의 발현 저해에도 효과적으로 대응했다. 결론적으로, 유리 금속 이온 자체는 세포독성 효과로 인해 화장품 소재에 적합하지 않지만, 정제된 MPC, 특히 YP-Cu는 이러한 금속 이온의 독성을 효과적으로 상쇄하고 세포 생존율을 향상시킬 뿐만 아니라, UVB 자극에 따 른 유해 효과를 완화하기 때문에 잠재적 기능성 화장품 소재로 사용될 수 있다.
Probiotics have been evaluated as therapeutic agents for cancer treatment in an increasing number of studies. This study investigated the inhibitory and cytotoxic effects of specific Lactobacillus strains on a human colorectal adenocarcinoma cell line (HT-29). The strains assessed were Limosilactobacillus (L.) reuteri VA 102, Ligilactobacillus (L.) animalis VA 105, and Limosilactobacillus (L.) reuteri KCTC 3594 (ATCC 23272). The viability of HT-29 cells was evaluated using the MTT assay. The findings revealed that cell-free supernatants (CFS) exhibited significant anticancer effects. Heat-inactivated L. reuteri VA 105 and L. reuteri KCTC 3594 induced a pronounced reduction in cell viability. Furthermore, live cultures of L. reuteri VA 105 and L. reuteri VA 102 also showed reduced cell viability compared to the control group. These results suggest that CFS and heat-inactivated cells may be more suitable for therapeutic applications than live bacteria owing to their improved safety profiles and reduced potential for adverse effects. Our findings also emphasize the potential anticancer benefits of these LAB strains.
Silage inoculants, which include beneficial microorganisms like lactic acid bacteria (LAB), play a vital role in modern silage production by enhancing fermentation quality. This study evaluated the effectiveness of various commercial inoculants on the fermentation dynamics of Italian ryegrass silage over 45 days. The treatments included a control group and five inoculant formulations: T1 (Lactiplantibacillus plantarum), T2 (Lactiplantibacillus plantarum and Pediococcus pentosaceus), T3 (Lactiplantibacillus plantarum and Pediococcus pentosaceus and Lactiplantibacillus buchneri), T4 (Lactiplantibacillus plantarum and Lactiplantibacillus acidophilus and Lactiplantibacillus bulgaricus), and T5 (Lactiplantibacillus plantarum and Pediococcus pentosaceus and Enterococcus faecium). After 45 days, all treatment groups exhibited significantly higher crude protein (CP) content compared to the control group (80.64 g/kg dry matter (DM), p<0.05). Treatments T2 and T5, which incorporated combinations of Lactiplantibacillus plantarum, Pediococcus pentosaceus and Enterococcus faecium, showed higher CP contents at 105.53 and 107.05 g/kg DM, respectively. The inoculated silages also demonstrated a rapid pH reduction within the early days, with Lactiplantibacillus plantarum in T1 reducing the pH to 4.0 within four days. Additionally, inoculated treatments had significantly higher lactic acid levels than the control (67.96 g/kg DM, p<0.05), and T3 (Lactiplantibacillus buchneri) produced higher acetic acid levels (16.07 g/kg DM, p<0.05) than other inoculants. The control group also had a notably higher ammonia nitrogen content. In conclusion, while single-strain inoculants like Lactiplantibacillus plantarum are effective for rapid acidification, the use of combined bacterial strains can further enhance silage quality by improving lactic acid fermentation and nutrient preservation, particularly in treatments like Lactiplantibacillus plantarum and Pediococcus pentosaceus and Lactiplantibacillus buchneri and Enterococcus faecium.
This study examined the feeding behavior and growth performance of 31 Hanwoo steers (10 months old; 278 ± 36.13 kg) within a precision livestock farming system using Roughage Intake Control (RIC) units for real-time data collection. Feeding behavior traits were derived from RIC database data using R software, with subsequent analysis conducted using SAS software. The results indicated that the steers visited the feed stations every 31.12 ± 11.99 minutes, averaging 11 ± 3.37 visits/day. Each feeding session lasted an average of 5.90 ± 1.55 minutes, resulting in a feed intake rate of 77.98 ± 22.53 g/min. Mean daily feed intake was 4.76 ± 1.36 kg, and body weight increased consistently, reaching an average of 412 ± 43.44 kg, with an average daily gain (ADG) of 1.26 ± 0.38 kg. Pearson correlation analysis revealed a strong relationship between daily feed intake and visit duration (r² = 0.621; p < 0.01) and an inverse correlation between daily feed intake and feed intake duration (r² = −0.445; p < 0.05), indicating behavioral adaptation. These findings highlight the importance of monitoring feeding behavior traits concerning growth performance, enhancing our understanding of individual animal behavior and its implications for productivity while emphasizing the role of advanced technologies in optimizing feed utilization in confined livestock systems.