검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 247

        181.
        2014.07 서비스 종료(열람 제한)
        Brassinosteroids (BRs) play important roles in many aspects of plant growth and development. BR-induced AtBEE3 (brassinosteroid enhanced expression 3) is required for a proper BR response in Arabidopsis. Here, we identified a poplar (Populus alba x P. glandulosa) BEE3 homolog encoding a putative basic helix-loop-helix (bHLH)-type transcription factor through microarray analysis. Transcripts of PagBEE3 were mainly detected in stems, with the internode having a low level of the transcripts and the node having a relatively higher level. The function of the PagBEE3 gene was investigated through the phenotypic analyses with PagBEE3-overexpressing (ox) transgenic lines. This work mainly focused on a potential role of PagBEE3 in stem growth and development of polar. The PagBEE3-ox poplar showed thicker and longer stems than wild-type plants. The xylem cells from the stems of PagBEE3-ox plants revealed remarkably enhanced proliferation, resulting in an earlier thickening growth than wild-type plants. Microarray analysis revealed that the expression of many genes involved in xylem cell proliferation and development was altered in the PagBEE3-ox plants. Therefore, this work suggests that xylem development of poplar is accelerated in PagBEE3-ox plants and PagBEE3 plays a role in the stem growth by increasing the proliferation of xylem cells to promote the initial thickening growth of poplar stems.
        182.
        2014.06 KCI 등재 서비스 종료(열람 제한)
        In this study we followed biofilm formation and development in a granular activated carbon (GAC) filter on pilot-scale during the 12 months of operation. GAC particles and water samples were sampled from four different depths (-5, -25, -50 and –90 cm from surface of GAC bed) and attached biomass were measured with adenosine tri-phosphate (ATP) analysis and heterotrophic plate count (HPC) method. The attached biomass accumulated rapidly on the GAC particles of top layer throughout all levels in the filter during the 160 days (BV 23,000) of operation and maintained a steady-state afterward. During steady-state, biomass (ATP and HPC) concentrations of top layer in the BAC filer were 2.1 μg·ATP/g·GAC and 3.3×108 cells/g·GAC, and 85%, 83% and 99% of the influent total biodegradable dissolved organic carbon (BDOCtotal), BDOCslow and BDOCrapid were removed, respectively. During steady-state process, biomass (ATP and HPC) concentrations of middle layer (-50 cm) and bottom layer (-90 cm) in the BAC filter were increased consistently. Biofilm development (growth rate) proceed highest rate in the top layer of filter (μATP = 0.73 day-1; μHPC = 1,74 day-1) and 78%∼87% slower in the bottom layer (μATP = 0.14 day-1; μHPC = 0.34 day-1). This study shows that the combination of different analytical methods allows detailed quantification of the microbiological activity in drinking water biofilter.
        183.
        2014.03 KCI 등재 서비스 종료(열람 제한)
        SCB액비 처리에 의한 포플러 클론들의 생육특성을 조사한 결과, 생존율은 처리구와 무처리구에서 각각 95.0%와 92.5%로 양호하게 나타났다. 포플러 클론들의 평균 줄기 수는 처리구 및 무처리구에서 각각 11.8개와 11.5개로 나타났으며, SCB액비 처리구에서 현사시 72-31, Bonghwa1 및 Clivus 클론이 각각 17.1개, 14.5개 및 13.8개로 우수하게 나타났다. 평균 엽면적은 처리구 및 무처리구에서 각각 71.0 cm2와 52.3 cm2로 나타나 처리구가 35% 높았다. 포플러 단벌기 맹아림의 연평균 지상부 바이오매스 생산량을 조사한 결과, 처리구 및 무처리구의 연평균 바이오매스 생산량은 각각 8.5 ton/ha와 5.6 ton/ha로 나타나 처리구가 51% 우수하였으며, SCB액비 처리구에서 현사시 Clivus, 72-31 및 Bonghwa1 클론이 각각 15.2 ton/ha, 14.0 ton/ha 및 11.6 ton/ha로 우수하였다.
        184.
        2014.01 KCI 등재 서비스 종료(열람 제한)
        Pyrolysis of biomass is the thermal decomposition of its carbohydrate structures into numerious hydrocarboncompounds, light gases and carbon-rich solid residue. Understanding the pyrolysis characteristics is essential asfundamental data for various thermo-chemical conversion of biomass. This study investigated slow pyrolysis of fourIndonesian biomass (sugarcane bagasse, cocopeat, palm kernel shell (PKS), umbrella tree) for a temperature range of300~600oC. With increase in temperature, all samples showed a decrease in the biochar yield as more compounds werereleased as vapors increasing the bio-oil and gas yields. The biochar became more carbon-rich with a carbon content of85% or higher at 500oC. However, the product yields and properties showed large variations between the samples.Cocopeat had the highest biochar yield, while wood and baggasse had the highest bio-oil yield. Despite the low massyields, the biochar of wood and bagasse had the best quality in terms of macro-pore and micro-pore development, whichis a key property for its applications as adsorbent, soil ameliorator, as well as fuel. The bio-oil did not have a sufficientlyhigh HHV for use as main fuel, but could be utilized through co-firing or slurry production with biochar. In the lightgases, CO and CO2 were dominant, but could be burned on-site to supply the heat required for pyrolysis.
        185.
        2013.12 KCI 등재 서비스 종료(열람 제한)
        시설재배지 토양에 녹비작물의 재배가 Biomass-C와 토양 양분의 변화에 미치는 영향을 평가하고자 pot(Ø10-cm)에 헤어리벳치, 호밀, 발랭이를 70일간 재배 후 식물체와 토양을 분리하여 분석한 결과가 다음과 같다. 녹비작물의 생육량은 호밀이 가장 많았으며, 질수흡수량은 헤어리벳치가 가장 높게 나타났다. 호밀 재배구가 토양의 인산함량은 가장 낮았으며, biomass C는 가장 높게 나타났다. 시험 후 토양의 질소함량과 식물체 질소 흡수량은 고도의 부의 상관을 보였다. T-N 함량은 헤어리벳치 시험구에서는 증가하였지만, 호밀과 바랭이 재배구에서는 감소하는 경향을 보였다. 이상의 결과를 요약해볼 때 시설재배지에서 가장 중요한 것이 토양의 염류집적(EC) 인데 시험 후 토양에서 대조구에 비해서 콩과인 헤어리벳치는 EC가 약간 증가했고 다른 무기성분은 큰 변화가 없으며, 화본과인 호밀은 EC와 다른 무기성분도 약간 감소하는 경향으로 시설연작재배지에서는 화본과 작물이 염류집적 경감을 위해서 유리하다
        186.
        2013.12 KCI 등재 서비스 종료(열람 제한)
        In order to obtain the optimal design of a char removal cyclone, the effect of the vortex finder height and inlet shapeon its performance are numerically carried out. The pressure drop and collection efficiency are calculated for four differentcyclones with different vortex finder heights and inlet shapes. To validate the present numerical process, the calculatedpressure drops for two types of cyclones are compared with experimental results and the results show a good agreementbetween experimental and numerical results. From the results, increasing the height of the vortex finder, the collectionefficiency is increased. As for cyclone inlet shapes, the tangential one is characterized by lower efficiency compared withthe volute counterpart. The current result can be used for the design of cyclones with high collection efficiency, especiallyfor removing tiny char which is generated during fast pyrolysis process of waste biomass.
        187.
        2013.12 KCI 등재 서비스 종료(열람 제한)
        In the present study, lab-scale fast pyrolysis reactor (1kg/hr) using lignocellulosic waste biomass was numerically modeledwith various reaction mechanism and the calculation results were compared. Three kinds of reaction mechanisms were appliedsuch as three-step mechanism, two-stage, semi global mechanism and Broido-Shafizadeh mechanism to simulate chemicalreactions in the fast pyrolysis reactor. The fast pyrolysis reactor was modeled as function of mass fraction and reactiontemperature following each reaction mechanism. Especially, the reaction temperature is one of important factors to determinebio-oil yield. Hence, in this study, reaction rates and yield of fast pyrolysis products were compared with varying reactiontemperature for the three kinds of reaction mechanism. The variation of reaction rate for two-stage, semi global mechanismand Broido-Shafizadeh mechanism showed very similar pattern but, three-step mechanism has different trend because theeffect of secondary reaction was missing. The yield of tar was increased before reaching maximum tar yield at 430oC and520oC for two-stage, semi global mechanism and Broido-Shafizadeh mechanism, respectively then decreased as temperaturerises more. But, the yield of tar was increased continuously for three-step mechanism as temperature rises. The yield of non-condensable gas and char was increased as temperature rises for three kinds of reaction mechanisms.
        188.
        2013.12 KCI 등재 서비스 종료(열람 제한)
        ‘목양’은 국립식량과학원 벼 육종연구진이 총체 사료용 벼 품종을 육성할 목적으로 2001년 하계에 SR24592-HB2319 를 모본으로 하고 신초형 IR73165-B-6-1-1을 부본으로 교배 하여 계통육종법으로 육성한 품종으로 2010년 12월 농작물 직무육성신품종선정위원회에서 국가목록등재품종으로 선정 됨과 동시에 ‘목양’으로 명명하였다. ‘목양’의 출수기는 보통 기 재배에서 8월 23일로 ‘녹양’보다 8일 정도 늦은 만생종이 다. ‘목양’은 도열병, 줄무늬잎마름병, 오갈병에는 ‘녹양’보다 강하지만, 흰잎마름병, 벼멸구에는 약한 편이다. ‘목양’은 ‘녹 양’보다 탈립에 강하고, 후기녹체성이 우수하였다. ‘목양’은 가소화양분총량(TDN) 함량이 높고 중성세제불용섬유소(NDF) 와 산성세제불용섬유소(ADF)가 낮았다. ‘목양’의 총체수량은 지역적응시험에서 2008년부터 2010년까지 평균 17.7 MT/ha 로 ‘녹양’보다 25% 증수하는 경향을 보였다. ‘목양’은 가소화 양분총량(TDN)은 59.5%였으며 ADF와 NDF가 낮아 상대적 사료가치가 ‘녹양’에 비해 높은 품종이다. ‘목양’의 정조 수량은 보통기 재배에서 5.59 MT/ha로 ‘녹 양’보다 16% 증수되었다. 재배적지는 중부 및 남부평야지 1 모작 지대이다.
        189.
        2013.11 서비스 종료(열람 제한)
        In the sustainable society, the recycling of resources should achieve the preservation of regional and global environment and should be coordinated with regional agricultural and industrial activities. Especially for waste biomass resources, it will be supplied or discharged by multiple industries as agriculture, forestry, fisheries, manufacturing, commerce and living, and will be demanded by multiple purposes as foods, supplements, feeds, fertilizers, industrial materials and fuels. Therefore, waste biomass flows connecting these supplies to demands will be extremely complex. In order to judge the effectiveness of introducing technologies for recycling, a comprehensive framework, which can estimate impacts of technologies on regional material cycles and regional and global environment, is need. For this purpose, we are developing a physical input-output table (PIOT) for describes complex material flows of waste biomass, water and their constituents (e.g. carbon, nitrogen and phosphorus) in a region by integration of quantity data. This PIOT sets not only industries but also activities on recycling, waste disposal and wastewater handling in detail as sectors. Import and export between regions, and emissions to environment are also set in the table. Applying content rates of carbon, nitrogen and phosphorus to mass flows of each item, elemental flows of those are accounted for estimating emission to water (as organic pollutant and nutrients) and atmosphere (as greenhouse gas) from the whole system. The energy consumed by activity in each sector is also accounted for estimating greenhouse gas emission. Another originality of this PIOT is that physical data obtained from relevant statistics will be directly integrated to values in the table. As a case study, we are surveying the waste biomass flow at the Kochi prefecture, Japan. Administrative information on industrial waste was acquired from the Kochi Prefecture and the Kochi City with their cooperation. For municipal waste, annual survey on municipal solid waste business by the ministry of the environment was used. For by-product, generation amount, sort, composition and usage of biomass waste were surveyed by hearing, sampling and questionnaire at recyclers of biomass waste. Amounts of generation, recycling and disposal of each biomass waste item, disposal method and municipality were built up from these reports and survey. Using above information, flows of each lot (the annual generation an item of waste from a source) of biomass waste from generation via treatment to disposal or reuse were compiled in the database and set into the PIOT. The current biomass PIOT for Kochi Prefecture is shown in Figure. This table shows weight of materials as wet basis. The 1.43 × 108 tons/year of total demand and the 1.34 × 108 tons/year of total supply were accounted at this time. The difference between demand and supply would mainly be resulted from unrecorded flows in our database, especially on supply of water from the waterworks and the natural water, and the biomass production. We will survey constituents of carbon and nutrients in materials and expand our PIOT to depict the substance flows of elements, in order to estimate quality and quantities of emissions.
        190.
        2013.11 서비스 종료(열람 제한)
        This study characterized PM and VOC emissions from cow dung combustion in a controlled experiment. Dung from grass-fed cows was dried and combusted using a dual cone calorimeter. Heat fluxes of 10, 25, and 50 kW/m² were applied. The concentrations of PM and VOCs were determined using a dust spectrometer and gas chromatography/mass spectrometry, respectively. PM and VOC emission factors were much higher for the lower heat flux, implying a fire ignition stage. When the heat flux was 50 kW/m², the CO₂ emission factor was highest and the PM and VOC emission factors were lowest. Particle concentrations were highest in the 0.23-0.3-μm size range at heat fluxes of 25 kW/m² and 50 kW/m². Various toxic VOCs including acetone, methyl ethyl ketone, benzene, and toluene were detected at high concentrations. Although PM and VOC emission factors at 50 kW/m² were lower, they were high enough to cause extremely high indoor air pollution. The characteristics of PM and VOC emissions from cow dung combustion indicated potential health effects of indoor air pollution in developing countries.
        191.
        2013.09 KCI 등재 서비스 종료(열람 제한)
        The following are the results from an evaluation of the combustion characteristics of biomass processed with lowtemperature carbonization and coal, and those of a blend of both. Differential thermo-gravimetric (DTG) analysis has revealed that the number of curves was reduced as a result of carbonization and that the fuel quality was improved due to the increase of initial temperature (IT). It was also confirmed that the carbonized samples consisting only of the biomass required less combustion time (tq), while samples blended with coal burned longer than the weighted average value. The combustion time of a blended sample was shorter at an carbonization temperature of 400oC than at 300oC, and the combustion stability was achieved due to a narrow range of change in the combustion characteristics. The reaction rate constant (k) of the samples blended with coal was found to be smaller for all blend ratios, when compared with that of the unblended samples (raw, carbonized biomass). The combustion reaction models that were applicable for the devolatilization-combustion zone were diffusion (D1, D3) and Reaction order (O3) models; diffusion (D1-D4) model was primarily employed in the char combustion zone. In summary, low-temperature carbonization contributed to minimizing the change in the combustion characteristics of the biomass/coal blend.
        192.
        2013.09 KCI 등재 서비스 종료(열람 제한)
        농업유래의 바이오매스 중 볏짚의 저장형태와 저장기간에 따른 수분함량 변화와 바이오매스의 화학적 성분 변화를분석함으로써 바이오에탄올 생산을 위한 원료의 최적 저장방법을 제시하고자 하였다. 주요 결과는 아래와 같다.1. 볏짚의 수분함량 변이를 측정한 결과 실내에서 보관한사각곤포 및 원형곤포는 약 20 ~ 25%의 수분함량을유지하였으며 실외에서 보관한 비가림 시설을 도입한사각곤포의 경우 20%이하의 낮은 수분함량을 확인하였다.2. 볏짚의 화학적 성분의 변이를 분석한 결과 실외보관곤포는 cellulose 및 hemicellulose의 함량이 큰 폭으로감소하였으나, 실내에서 보관한 곤포들은 비닐원형곤포를 제외한 나머지 집속형태에서는 오히려 성분의 함량의 증가를 확인하였다.3. 볏짚을 장기간 보관할 때에는 외부환경을 차단할 수있는 실내에서 보관하거나 부득이하게 실외에서 보관할 때 최소 비가림 시설을 도입하여 수분함량 및 화학적 성분의 감소를 최소화해야 바이오에탄올 생산을 위한 고품질의 원료로써 이용될 수 있을 것이다.
        193.
        2013.07 KCI 등재 서비스 종료(열람 제한)
        Biomass resources might be recognized as a promising way to alter fossil fuels, such as petroleum oil, natural gas and coal and to prevent the emission of greenhouse gases which will bring about global warming. Therefore many countries have tried to identify and secure available biomass resources. In this study, the energy potential of Korean biomass resources, such as agricultural biomass wastes, municipal solid wastes, and livestock wastes, was analyzed and calculated by using various data. The available energy potential in 5 major cities in Korea was over 3.5 M TOE. Especially the municipal solid wastes was over 1.5 M TOE, so the conversion of municipal solid wastes might be easily adopted.
        194.
        2013.07 KCI 등재 서비스 종료(열람 제한)
        To produce bioethanol from cellulosic biomass, the cellulosic biomass needs pretreatments for high efficiency saccharification. This study, thus, aims to evaluate the efficiency of several pretreatments using vegetables as a cellulosic biomass among food wastes. The evaluated pretreatment methods were acid treatment, ammonia treatment and hydrogen peroxide treatment, which were used by individual and/or incorporating method. As a result, the concentration of reducing sugar increased 4 ~ 15 times and that of glucose increased 5 ~ 26 times compared to the samples without pretreatment. The acid treatment as an individual treatment was the most efficient, and the efficiency of incorporating treatment showed higher than that of individual treatment. Besides, there were differences in the composition and content of hydrolyzed sugars although the saccharification efficiency was similar by the method of each pretreatment.
        195.
        2013.07 KCI 등재 서비스 종료(열람 제한)
        In this study, the thermo-catalytic hydrogenation using corn stark and wasted palm kernel shell was carried out for the production of hydrocarbon compounds in direct biomass liquefaction. The conversion of biomass in direct biomass liquefaction over Mo-based catalyst increased with increasing the reaction temperature and the content of the volatile matter contained in biomass and the corn starch was more available than the wasted palm kernel shell. And then, the conversion was about 97.9% using corn starch and was about 92.4% using wasted palm kernel shell at 400oC. It was confirmed that the liquefied products obtained after the thermo-catalytic reaction were C6, C7, C8-typed hydrocarbon compounds.
        196.
        2013.07 서비스 종료(열람 제한)
        Sugarcane is one of the most efficient photosynthesizer in the plant kingdom, able to convert as much as 2% of incident solar energy into biomass. A large amount of lignocellulosic biomass such as leaf litter residues and bagasse are generated during the sugarcane harvest or after the sugar refining process, respectively. Therefore, lignocellulosic biomass from leaf and processing residues will likely become a valuable feedstock for biofuel production. However, higher temperatures and/or acid concentrations result in dehydration of xylose to furfural, and glucose to hydroxymethyl furfural, which act as inhibitors of the fermentation process. New pretreatment protocols are being developed that require the application of xylanases and other enzymes for maximal yields of xylose. Our objectives target the improvement of fermentable sugar yields from hemicellulosic sugarcane residues and enhancing the biosafety of the transgenic plants. We evaluated two transgenic approaches: lignin modification by RNAi suppression of the lignin biosynthetic gene COMT and in planta production of a hyperthermostable xylanase. More than 200 transgenic sugarcane plants were generated and lines with suppression or expression of the target genes were selected. RNAi suppression of COMT resulted in reduced lignin content and altered lignin composition. In planta produced xylanase Xyl10B converted the majority of sugarcane xylan to fermentable xylobiose. Performance and conversion efficiency of transgenic plants grown in replicated field plots under USDA-Aphis notification 11-040-120 will also be presented.
        197.
        2013.06 KCI 등재 서비스 종료(열람 제한)
        The fuel characteristics, the combustion characteristics, and the kinetic study of sample that had been torrefied at 250 ~ 300oC were investigated for orange peel, rice husks, wood chips, and wood pellets. When higher torrefaction temperature was used, reduction of the yield, and increase in the fuel ratio, and decrease of volatile content were found. As a result, improvement of the fuel characteristics was confirmed. As parameters for the combustion characteristics, initial temperature (IT) was rised slightly because of the high torrefaction temperature of the wood chip, and burnout temperature (BT) showed lowered. The combustion time (tq) of torrefied wood chip (TC) is shorter than raw sample, and unburned carbon generation will be suppressed. The activation energy of the char combustion reaction (2nd) is reduction compared to the raw sample, and the pre-exponential factor was decreased. As a result, the combustion reaction rate constant (k) of the torrefied wood chips, should be determined considering the activation energy and the pre-exponential factor.
        199.
        2013.03 KCI 등재 서비스 종료(열람 제한)
        This study was conducted to evaluate overwintering of hairy vetch (Vicia villosa Roth), biomass, and inorganic N concentration in soil to verify the adaptability of eight cultivars of hairy vetch into country. Winter survival rate was higher for the hairy vetch cultivars, such as Hungvillosa or Ostsaat, than those of Minnie, Oregon common, and TTF1, which affected amount of biomass of each hairy vetch, with higher biomass observed in Hungvillosa or Ostsaat cultivar. There were no significant difference for the mineral nutrients of each hairy vetch cultivar. Inorganic N concentration in soil was increased at 10 days after mowing by application of Hungvillosa and Ostsaat cultivars that had highly produced N content from the raw materials.
        200.
        2012.12 KCI 등재 서비스 종료(열람 제한)
        Compared to wide ranges of genetic variation of natural populations, very limited Miscanthus cultivar has been released. This study was the first report on the development of Miscanthus cultivar by means of radiation breeding. Seeds of M. sinensis were initially exposed to gamma rays of 250 Gy for 24 h, generated from a 60Co gamma-irradiator. The irradiated seeds were sown and then the highly tiller-producing mutants were selected for this study. Biomass-related parameters including tiller number, plant height, stem diameter, and leaf number were measured. Ploidy level and internal transcribed spacer (ITS) were investigated to characterize the mutants compared to wild type (WT) Miscanthus. Plant height and tiller number were negatively related, where multi-tillering mutants were relatively short after 4 month growth. However stem diameter and leaf number were greater in mutants. All the materials used in this study were diploid, implying that the mutants with greater tiller numbers and stem diameter were not likely related to polyploidization. Based on the sequence of ITS regions, the mutants demonstrated base changes from the gamma irradiation where G+C content (%) was decreased in the ITS1, but increased in ITS2 when compared to WT sequence. ITS2 region was more variable than in ITS1 in the mutants, which collectively allows identification of the mutants from WT. Those mutants having enhanced tillers and allelic variations might be used as breeding materials for enhanced biomass-producing Miscanthus cultivars.