검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 564

        341.
        1995.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        알콕사이드를 원료로 하고 용매로는 에탄올과 증류수를 사용하여 cordierite 분말을 제조하였다. 촉매로는 HCl을 사용하였다. 촉매의 양은 HCl/TEOS 몰비를 0.1, 0.3, 0.5mol/mol비로 각각 반응시켜 촉매의 양에 따른 합성된 분말의 특성을 조사하였다. 0.1 mol/mol비로 제조된 분말의 α-cordierite의 결정화 온도가 1050˚C인 반면 0.3 및 0.5mol/mol비로 제조된 분말의 α-cordierite 결정화 온도는 950˚C였다. 또한 0.1mol/mol비로 제조된 분말의 경우에서는 MgAl2O4상이 1300˚C까지 존재하였다. 그러나 0.3 및 0.5mol/mol비로 제조된 분말의 경우에서는 1300˚C에서 α-cordierite상만이 존재하였다.
        4,000원
        342.
        1994.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        광촉매 TiO2 막에 의한 formic acid의 광분해 효율이 연구되었다. 막반응기는 용액의 정밀여과(micro-filtration)는 물론 유기물의 광분해를 동시에 수행할 수 있도록 다공성 TiO2 튜브 (평균기공: 0.2μm)를 이용한 새로운 타입으로 개발되었으며 광원으로는 365 nm 파장을 갖는 UV를 사용하였다. 또한 반응기의 광분해 효율을 증진시키기 위하여 슬립케스팅법으로 제조한 TiO2 튜브표면을 TiO2 졸로 코팅하였다. TiO2 막 반응기의 분해효율은 용액의 투과량(flux), 막의 미세구조(졸의 pH), 공급산소량, H2O2와 같은 1차 산화제(primary oxidants)의 첨가 그리고 Nb2O5와 같은 물질의 도핑(doping)에 매우 민감함을 알 수 있었다. 최적의 광분해 반응조건에서 formic acid의 산화효율은 pH가 1.45인 TiO2 졸로 코팅한 막 반응기를 사용했을때 80% 이상이었다. Formic acid 용액에 1차 산화제 H2O2를 첨가하거나 막을 Fe2O3로 도핑함으로써 산화효율은 최고 20%까지 증가시킬 수 있었다.
        4,200원
        343.
        1993.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        니켈-흑연 복합분말은 고온 고압하에서 수소개스를 사용하여 ammoniacal황산니켈염 수용액으로 부터 니켈이온을 흑연코어표면에 석출시켜 제조하였으며, SEM. X-선 회절분석, 입도 및 화학분석 등을 이용하여 환원속도 및 니켈코팅층의 특성에 미치는 코팅 촉매제 Anthraquinone(C6H4COC6H4 CO) 의 영향을 조사하였다. 코팅촉매제의 입도 및 첨가량 변호에 따라 수소개스 주입 후 환원반응이 시작되기 까지 필요한 잠복기는 22~70분 정도 이었으며, 흑연코어 표면의 니켈코팅층은 포도송이 모양(botryoidal)인 미립의 니켈 nodule(2-4μm)로 형성되었다. 또한 코팅촉매제의 첨가량이 증가함에 따라 코팅용액중 니켈이온의 환원속도는 증가하여 0.2gr/ℓ첨가시 4.5gr/ℓ/min를 나타내었다.
        4,000원
        344.
        1993.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Transesterification reaction between dimethyl phthalate and ethylene glycol was kinetically investigated in the presense of various metal nitrate catalysts at 170℃. The reaction rates measured by the amount of distilled methanol from the reaction vessel. The transesterification reaction was carried out under the first order conditions respect to the concentration of dimethyl phthalate and catalyst, respectively. The over all order was 2nd. By Arrhenius plot, the activation energy was calculated as 17.4kcal/mole and 17.2kcal/mole on the transesterification reaction with zinc nitrate and lead nitrate, respectively. Apparent rate constant, k' was appeared linear about concentration of catalyst.
        4,000원
        345.
        1992.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Transesterification reactions (methyl methacrylate with diethanolamine, ethylene glycol with dimethylphthalate) were kinetically investigated in the presence of zinc compound catalysts at 120~170℃ The amount of reactants was measured by gas chromatography. and the reaction rates also measured from the amount of reaction products and reactants upon each catalyst. The transesterification reactions were carried out under the first order conditions respect to the concentration of reactants, respectively, The overall reaction order was 2nd. The apparent rate constant (k') was found to obey first kinetics with respect to the concentration of catalyst. It shows that according to an increase in basicity of anionic species the rate constant increase, and that a linear relationship exists between ln k and pKa in transesterification reaction of methyl methacrylate with diethanolamine.
        4,000원
        346.
        1992.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Functionalized organic polymers have been used as supports for heterogenized homogeneous catalytic process[1]. Sprcific advantages of using these resins as support reagents have been reviewed[2-4]. These include: -ease of by-product separation from the main reaction product usuallyby simple filtration. -prevention of intermolecular reaction of reactive species or functional groups by simulating high dilution conditions[5]. -utility of the "fish-hook" principle in which a minor component in fished out of a large excess substrate by the insoluble polymer[6]. -the possibility of reusing recovered reagents as well as eliminating the use of volatile or noxious substances[7]. Catalysis by ion-exchange membranes is perhaps one of the latest examples of the use of a polymer-supported species. Conceptually, catalysts on membrane supports offer several possible advantages over traditional powder type systems. They are: (1) Membranes immobilize the catalyst, preventing agglomeration. (2) Filtration is unnecessary for the catalyst separation and so complete catalyst recovery is facilitated. (3) Catalytyic and separation processes can be combined, allowing membrane supported catalysts for the continous flow reactors. reactors.
        4,000원
        347.
        1992.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Lipases catalyzed the transesterification reaction between esters and various primary and secondary alcohols in a 99% organic medium, porcine pancreatic, yeast, mold lipases can vigorously act as catalysts in a number of nearly anhydrous organic solvents. Various transesterification reactions catalyzed by porcine pancreatic lipase in hexane obey Michaelis-Menten kinetics. The dependence of the catalytic activity of the enzyme in organic media on the pH of the aqueous solution from which it was recovered is bell-shaped, with the maximum coinciding with the pH optimum of the enzymatic activity in water. The catalytic power exhibited by the lipases in organic solvents is comparable to that displayed in water. In addition to transesterification, lipases Can catalyze several other processes in organic media.
        4,000원
        348.
        1990.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Transesterification reactions (methyl methacrylate with monoethanolamine, methyl methacrylate with n-butyl alcohol, dimethylphthalate with ethylene glycol, dimethyl phthalate with monoethanolamine) were kinetically investigated in the presense of various metal acetate catalysts at 110℃. The amount of reactants was measured by gas and liquid chromatography, and the reaction rates also measured from the amount of reaction products and reactants upon each catalyst. The transesterification reactions were carried out under the first order conditions respect to the concentration of reactants, respectively. The overall reaction order was 2nd, Maximum reaction rates were appeared at the range of 1.4 to 1.6 in electronegativity of metal ions and maximum catalytic activities were obserbed at the range of 1.5 to 1,8 in instability constant of metal acetates.
        4,000원
        349.
        2022.08 KCI 등재 서비스 종료(열람 제한)
        In order to photocatalytically treat organic matter (CODCr) and chromaticity effectively, chemical coagulation and sedimentation processes were employed as a pretreatment of the leachate produced from landfill in Jeju Island. This was performed using FeCl3・6H2O as a coagulant. For the treated leachate, UV/TiO2 and UV/TiO2/H2O2 systems were investigated, using 4 types of UV lamps, including an ozone lamp (24 W), TiO2 as a photocatalyst, and/or H2O2 as an initiator or inhibitor for photocatalytic degradation. In the chemical coagulation and sedimentation process using FeCl3・6H2O, optimum removal was achieved with an initial pH of 6, and a coagulant dosage of 2.0 g/L, culminating in the removal of 40% CODCr and 81% chromaticity. For the UV/TiO2 system utilizing an ozone lamp and 3 g/L of TiO2, the optimum condition was obtained at pH 5. However, the treated CODCr and chromaticity did not meet the emission standards (CODCr: 400 mg/L, chromaticity: 200 degrees) in a clean area. However, for a UV/TiO2/H2O2 system using 1.54 g/L of H2O2 in addition to the above optimum UV/TiO2 system, the results were 395 mg/L and 160 degrees, respectively, which were within the emission standard limits. The effect of the UV lamp on the removal of CODCr, and chromaticity of the leachate decreased in the order of ozone (24 W) lamp > 254 nm (24 W) lamp > ozone (14 W) lamp > 254 nm (14 W) lamp. Only CODCr and chromaticity treated with the ozone (24 W) lamp met the emission standards.
        350.
        2021.06 KCI 등재 서비스 종료(열람 제한)
        V2O5-TiO2 catalysts were prepared by various methods. V2O5-TiO2 were prepared by sol-gel method with different drying conditions (aerogel and xerogel), and V2O5 supported on TiO2 obtained by sol-gel method with precipitation-deposition method and impregnation method. The performance of the V2O5-TiO2 catalysts was investigated for the selective oxidation of hydrogen sulfide in the stream containing both ammonia and excess water. All the catalysts showed good dispersion of vanadium and they had high H2S conversion with no or little production of sulfur dioxide. The V2O5-TiO2 aerogel catalyst prepared by sol-gel method with drying under super critical condition had the highest surface area which led to better catalytic activity compared to those by other synthesis methods.
        351.
        2019.11 KCI 등재 서비스 종료(열람 제한)
        This study investigated the use of a hydroxyl-radicals-generated microbubble/catalyst (MB/Cat) system for removing organic pollutants, nitrogen, and phosphorous from liquid fertilizer produced by livestock wastewater treatment. Use of the MB/Cat system aims to improve the quality of liquid fertilizer by removing pollutants originally found in the wastewater. In addition, a reduction effect has been reported for antibiotics classified as representative non-biodegradable matter. Samples of liquid fertilizer produced by an aerobic biological reactor for swine wastewater treatment were first analyzed for initial concentrations of pollutants and antibiotics. When the MB/Cat system was applied to the liquid fertilizer, TCOD, TOC, BOD5, and NH3-N, and PO4-P removal efficiencies were found to be approximately 52%, 51%, 30%, 21%, and 66%, respectively. Additionally, Amoxicillin hydrate was removed by 10%, and Chlortetracycline HCl and Florfenicol were not present at detectable levels These findings confirm that the MB/Cat system can be used with livestock wastewater treatment to improve liquid fertilizer quality and to process wastewater that is safe for agricultural re-use.
        352.
        2019.11 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 빛 감성친화형 콘크리트에 광촉매를 적용하여 대기질 및 실내공기질을 개선하기 위한 LEFC 블록을 개발하고자 하였다. LEFC에 광촉매를 적용하게 되면 자외선 입사면 반대편에서도 투과로 인한 자외선이 존재하여 광촉매가 반응함으로써 일반 건축 자재를 적용한 경우보다 광촉매 반응효율이 크게 상승한다. 따라서 광촉매를 LEFC에 적용하기 위해 슬럼프, J-ring, L-box 테스트를 통한 자기충전성능을 평가하여 최적 배합을 결정하였고, 압축 및 휨 강도 시험을 통해 역학성능을 평가하였다. 그리고 TiO2 분포도를 확인하기 위해 SEM과 EDS 분석을 실시하였다. ALC골재와 단열재 적용으로 광촉매 사용량을 줄이고 단위중량을 감소시키는 방안을 활용하여 광촉매 효율을 증가시키는 빛투과 콘크리트 블록을 제작하였고, 향후 건조수축 등의 문제점 개선 및 NOx 제거 실험을 통한 LEFC 블록 성능 평가를 진행하고자 한다.
        353.
        2019.07 KCI 등재 서비스 종료(열람 제한)
        본 연구에서 광촉매 종류 및 혼입율에 따른 역학적 특성 및 질소산화물 제거 특성을 평가하였고 보다 경제적이고 효율적인 광촉매 콘크리트 제조를 위해 분할 타설하는 방법에 대해 검토하였다. 그 결과 광촉매 혼입률이 5%일 때 가장 높은 압축강도와 탄성계수가 측정되었다. 광촉매 반응에 의한 질소산화물 제거 성능평가 결과 광촉매 혼입률이 증가함에 따라 질소산화물 제거율이 증가하였다. 이때 광촉매 P-25의 질소산화물 제거성능은 NP-A보다 우수하였다. 경제성을 고려하여 콘크리트 표면의 일정 두께를 광촉매 콘크리트로 타설하는 분할 타설 방안을 제안하였고, 이때의 일체화 성능을 평가하였다. 그 결과 역학적 성능 및 내구성능이 Plain에 비해 동등 이상으로 나타나 일체화 거동을 만족하는 것으로 판단된다.
        354.
        2019.01 KCI 등재 서비스 종료(열람 제한)
        The catalytic activity of Ni-0.2%YSZ (Yttria-Stabilized Zirconia) with different promoters was evaluated for CO2 methanation. The catalysts were weighed for mixing and they were dried at 110 for molding into disks. The concentration of CO2 and CH4 for conducting of CO2 methanation were analyzed by gas chromatography and the physical characteristics of the disk-type catalyst formed were analyzed by X-ray diffraction, scanning electron microscope and energy dispersive x-ray spectrometer. The addition of CeO2 as a promoter for Ni-0.2%YSZ (denoted as Ni-5%Ce-0.2%YSZ) resulted in the highest CO2 methanation. It also showed catalytic activity at a low temperature(200°C). Following this, ZrO2, SiO2, Al2O3 and TiO2 were added to Ni-5%Ce-0.2%YSZ to compare the CO2 methanation, and the highest efficiency was found for. Ni-1%Ti-5%Ce -0.2%YSZ Then, the concentration of Ti was increased to 10% and the catalytic activity was estimated using seven different types of commercial TiO2. In conclusion, ST-01 TiO2 showed the highest efficiency for CO2 methanation.
        355.
        2018.10 서비스 종료(열람 제한)
        Background : For the green approach of nanoparticles synthesizing, plant based technology has been considered as cost-effective and eco-friendly mass production. The oriental medicinal crop, Kalopanax septemlobus (Thunb.) Koidz. (Korean name: 음나무), the deciduous tree and a family of Araliaceae. Endemic tree of Asian countries, K. septemlobus being used for the treatment of various diseases. Phytochemicals of K. septemlobus such as polyphenols has highly probability of reducing agent for biosynthesizing nanoparticles. Methods and Results : In this study, we applied K. septemlobus ZnO nanoparticles (Ks-ZnO NPs) with procedures including green approach one-pot synthesis. For the characterization of nanoparticles, UV–Vis, FTIR, XRD, SEM and TEM were used. The formation of ZnO nanoparticles, the aurface plasmon resonance were observed at 372 ㎚ in UV-Vis spectroscopy. The presence of functional groups which as a capping agent and formation of ZnO nanoparticles were confirmed in FTIR result. The crystallization and morphology showed by XRD, TEM and SEM respectively. The photocatalytic activity of ZnO nanoparticles, was determined using Methylene blue (MB) dye degradation under UV irradiation (365 ㎚) which resulted rate constant is (−k) 0.1215 with 97.5% of degradation in 30 min. Conclusion : The result shows that phytochemicals in K. septemlobus extract have a potential as a reducing agent to form ZnO nanoparticles. The ZnO NPs are capable to degrade MB with in brief time.
        356.
        2018.10 서비스 종료(열람 제한)
        Background : Panos extract is a mixture of four Panax plant extracts namely Dendropanax morbifera, Panax ginseng, Acanthopanax senticosus and Kalopanax septemlobus. We intended to use Panos extract for ZnO nanoparticles(NPs) synthesis and application for waste water treatment. Methods and Results : In the present study, we have synthesized Panos ZnO nanoparticles via co precipitation method. Characterization of the NPs has been done using X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR) and UV-Visible spectroscopy. An average of 75% efficacy in degrading the methylene blue dye has been observed. The nanoparticles showed antibacterial activity against E. coli and S. aureus. Conclusion : The results shows that Panos ZnO NPs can be a potential eco-friendly and economical tool for waste water management in the current scenario where there an intense urge to remediate the polluted environment through novel approaches such as Nanobiotechnology.
        357.
        2018.10 서비스 종료(열람 제한)
        Background : Codonopsis lanceolata is a perennial herb called as ‘Deodeok’ (더덕) in Korea. The roots of C. lanceolate has been reported to have some antioxidant and antimicrobial properties. The chemically reactive saponins of C. lanceolata might be used as a capping agent for the surface of ZnO nanoparticle, ultimately making it a highly efficient photocatalyst. Methods and Results : In this paper, we report the one-pot green synthesis of ZnO nanoparticles via precipitation method using root extract of C. lanceolata. The structure of green synthesized Cl-ZnO NPs was characterized using XRD, EDX, DLS and morphology using TEM. The FT-IR exhibited the information about the functional groups that capped the metal nanoparticle and the formation of metal NPs was confirmed by UV–vis spectra at 356nm. The Cl-ZnO NPs were evaluated for their catalytic activity by measuring the degradation of methylene blue (MB) dye in aqueous solution under UV light (365 ㎚). The result showed efficient degradation of MB, which was degraded 70% within 30 min by Cl-ZnO NPs. Conclusion : This study proves that the green route synthesized ZnO NPs from the root extract of C. lanceolata are low cost, time efficient, bio-degradable and non- toxic. The UVvis spectra confirmed the synthesis of ZnO NPs from C. lanceolata root extract. The Cl- ZnO NPs mediated catalysis exhibited high photocatalysis rate in short time. Ultimately, the green rapid synthesized Cl-ZnO NPs from root extract can be used as an efficient
        358.
        2018.10 서비스 종료(열람 제한)
        The effect of fine dust on indoor and outdoor atmospheric environment in Korea is getting larger and it is tried to solve this problem by incorporating photocatalyst. Conventional light transparent concrete (LEFC) arranges plastic rods to ensure light transmittance. However, it is difficult to secure sufficient fluidity due to the heterogeneity and spacing of the materials. In addition to the flow test, J-ring test and L-box test, which are ASTM standards or EN standards, are used to evaluate the fluidity and to find out the optimum mix design of light transparent concrete with self-consolidating performance.
        359.
        2018.10 서비스 종료(열람 제한)
        This study provides a simple introduction to photo-catalyst technology to self-clean the organic dirts and degrade the air pollution in urban environment. Moreover, it shows the spray coating technique was applied to effective coating on the surface of concrete specimen by using as-developed integral photocatalyst solution. In order to examine photo-catalytic activity and degradation effectiveness on the surface of the concrete specimen, the UV-LED lamp was used as a light source to activate the photo-catalysis. Methyl-orange dye was used as an indicating method to speculate the photo-catalytic reaction and UV-VIS spectrometer to determine the molar content of the organic dye.
        360.
        2018.09 KCI 등재 서비스 종료(열람 제한)
        콘크리트는 장기간 사용환경에 노출되면서 다양한 표면열화과정을 거친다. 실리케이트 기반 함침제는 콘크리트 표면에 적용되어 불용성 수화물을 형성하는데, 이 과정에서 다양한 공학적 장점을 기대할 수 있다. 본 연구는 분산형 실리케이트를 사용하여 표면의 내구성능을 강화하고 이후 광촉매를 분무함으로서 표면 함침된 콘크리트의 자기정화능력을 평가하는 것이다. 이를 위해 실리케이트 함침 콘크리트에 대하여 압축강도 뿐 아니라, 흡수성, 건조 수축, 염소이온저항성, 황산저항성, 동결융해 저항성 등과 같은 내구성 실험이 수행되었다. 또한 아세트 알데이드 및 메틸렌블루 반응 평가를 통하여 독성카스의 제거와 자기정화성능을 평가하였다. 실리케이트 함침 후 광촉매 도포를 함으로서 광촉매의 부착성을 확보할 수 있었으며, 콘크리트의 내구성 개선과 광촉매 고유의 정화성능을 유지할 수 있었다.