검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 145

        21.
        2017.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        V-substituted SrTiO3 thermoelectric oxide materials were fabricated by the conventional solid state reaction method. From X-ray diffraction pattern analysis, it can be clearly seen that almost every vanadium atom incorporated into the SrTiO3 provided charge carriers. The electrical conductivity σ, Seebeck coefficient S, and thermal conductivity k were investigated in a high temperature regime above 1000 K. The addition of vanadium significantly reduced the thermal conductivity and enhanced the Seebeck coefficient, as well as the electrical conductivity, thus enhancing the ZT value. A maximum ZT value of 0.084 at 673 K was observed for the sample with 1.0 mole% of vanadium substitution. In this study, the reason for the enhanced thermoelectric properties via vanadium addition was also investigated.
        4,000원
        22.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, p-type Bi−Sb−Te alloys powders are prepared using gas atomization, a mass production powder preparation method involving rapid solidification. To study the effect of the sintering temperature on the microstructure and thermoelectric properties, gas-atomized powders are consolidated at different temperatures (623, 703, and 743 K) using spark plasma sintering. The crystal structures of the gas-atomized powders and sintered bulks are identified using an X-ray diffraction technique. Texture analysis by electron backscatter diffraction reveals that the grains are randomly oriented in the entire matrix, and no preferred orientation in any unique direction is observed. The hardness values decrease with increasing sintering temperature owing to a decrease in grain size. The conductivity increases gradually with increasing sintering temperature, whereas the Seebeck coefficient decreases owing to increases in the carrier mobility with grain size. The lowest thermal conductivity is obtained for the bulk sintered at a low temperature (603 K), mainly because of its fine-grained microstructure. A peak ZT of 1.06 is achieved for the sample sintered at 703 K owing to its moderate electrical conductivity and sustainable thermal conductivity.
        4,000원
        23.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We fabricate fine (<20 μm) powders of Bi0.5Sb1.5Te3 alloys using a large-scale production method and subsequently consolidate them at temperatures of 573, 623, and 673 K using a spark plasma sintering process. The microstructure, mechanical properties, and thermoelectric properties are investigated for each sintering temperature. The microstructural features of both the powders and bulks are characterized by scanning electron microscopy, and the crystal structures are analyzed by X-ray diffraction analysis. The grain size increases with increasing sintering temperature from 573 to 673 K. In addition, the mechanical properties increase significantly with decreasing sintering temperature owing to an increase in grain boundaries. The results indicate that the electrical conductivity and Seebeck coefficient (217 μV/K) of the sample sintered at 673 K increase simultaneously owing to decreased carrier concentration and increased mobility. As a result, a high ZT value of 0.92 at 300 K is achieved. According to the results, a sintering temperature of 673 K is preferable for consolidation of fine (<20 μm) powders.
        4,000원
        24.
        2017.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The renewable energy sources can be thought of one of the major measures to reduce greenhouse gas emissions in the industries. However, the utilization technology for those sources is approaching in the different matters. One of them, thermoelectric generation might be applicable to fishing industry. A various of internal combustion engines are used in a wide range of fisheries. After the ignition process, the heat passed out from the exhaust outlet. Recycling the heat could be not only an energy source but also reduction of green gas emission. Therefore, this study was designed to verify the feasibility of generation from wasted exhaust gas and analyze the performance. The designed experiment devices were connected with a data logger and an electric loader to quantify the currency and voltage. The devices were installed in a coastal fishing vessel for a gillnet fishery. During the whole fishing trips, the amount of generation was measured by engine rpm and the fishing operation procedures including vessel operations. At the maximum 1,500 rpm in the practical range, the generation amount was 113.6 W. The amount difference in relation to connection method was within 5 W: serial connection was 111.4 W and parallel connection was 115.8 W.
        4,000원
        25.
        2017.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The thermoelectric Seebeck and Peltier effects of a single walled carbon nanotube (SWCNT) quantum dot nanodevice are investigated, taking into consideration a certain value of applied tensile strain and induced ac-field with frequency in the terahertz (THz) range. This device is modeled as a SWCNT quantum dot connected to metallic leads. These two metallic leads operate as a source and a drain. In this three-terminal device, the conducting substance is the gate electrode. Another metallic gate is used to govern the electrostatics and the switching of the carbon nanotube channel. The substances at the carbon nanotube quantum dot/ metal contact are controlled by the back gate. Results show that both the Seebeck and Peltier coefficients have random oscillation as a function of gate voltage in the Coulomb blockade regime for all types of SWCNT quantum dots. Also, the values of both the Seebeck and Peltier coefficients are enhanced, mainly due to the induced tensile strain. Results show that the three types of SWCNT quantum dot are good thermoelectric nanodevices for energy harvesting (Seebeck effect) and good coolers for nanoelectronic devices (Peltier effect).
        4,000원
        26.
        2017.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A thin film thermoelectric generator that consisted of 5 p/n pairs was fabricated with 1 μm-thick n-type In3Sb1Te2 and p-type Ge2Sb2Te5 deposited via radio frequency magnetron sputtering. First, 1 μm-thick GST and IST thin films were deposited at 250 oC and room temperature, respectively, via radio-frequency sputtering; these films were annealed from 250 to 450 oC via rapid thermal annealing. The optimal power factor was found at an annealing temperature of 400 oC for 10 min. To demonstrate thermoelectric generation, we measured the output voltage and estimated the maximum power of the n-IST/ p-GST generator by imposing a temperature difference between the hot and cold junctions. The maximum output voltage and the estimated maximum power of the 1 μm-thick n-IST/p-GST TE generators are approximately 17.1 mV and 5.1 nW at ΔT = 12K, respectively.
        4,000원
        27.
        2016.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        4,000원
        28.
        2016.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        해상에서는 UN산하 IMO(International Maritime Organization, 국제해사기구)는 선박에서 배출하는 CO₂량을 2030년까지 30 %까지 줄이는 것을 목표로 설정하고 있다. 본 연구는 이러한 상황에 대응하고 친환경기술의 개발을 목표로 선박용 내연기관에서의 폐열을 이용하는 열전발전시스템 개발에 최종목표를 두고, 본 논문에서는 선박용 열전발전시스템 개발에 앞서 기초 열해석을 실시하고 분석하였다. 그 결과 다음과 같은 열전발전시스템의 효율향상에 관한 유효한 방법을 얻어 낼 수 있었다. 1) 고온측 열원과 모듈간 온도차를 줄여 모듈의 온도차를 늘리는 것으로 열전발전시스템의 효율이 8.917 %로 향상되는 것을 알 수 있었다. 2) 외부부하저항의 변화에 따른 시스템 효율은 약 6 %로 그 변화폭이 크게 발생하지 않는 것을 확인할 수 있었다. 3) 동일 계산 조건에서 방형관의 재질이 스테인레스인 경우의 시스템 효율이 8.707 %로 두랄루민(8.605 %), 동(8.607 %)보다 높을 것을 확인할 수 있었다.
        4,000원
        29.
        2016.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Graphene oxide (GO) powder processed by Hummer's method is mixed with p-type Bi2Te3 based thermoelectric materials by a high-energy ball milling process. The synthesized GO-dispersed p-type Bi2Te3 composite powder has a composition of Bi0.5Sb1.5Te3 (BSbT), and the powder is consolidated into composites with different contents of GO powder by using the spark plasma sintering (SPS) process. It is found that the addition of GO powder significantly decreases the thermal conductivity of the pure BSbT material through active phonon scattering at the newly formed interfaces. In addition, the electrical properties of the GO/BSbT composites are degraded by the addition of GO powder except in the case of the 0.1 wt% GO/BSbT composite. It is found that defects on the surface of GO powder hinder the electrical transport properties. As a result, the maximum thermoelectric performance (ZT value of 0.91) is achieved from the 0.1% GO/BSbT composite at 398 K. These results indicate that introducing GO powder into thermoelectric materials is a promising method to achieve enhanced thermoelectric performance due to the reduction in thermal conductivity.
        4,000원
        30.
        2016.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The recent rise in applications of thermoelectric materials has attracted interest in studies toward the fabrication of thermoelectric materials using mass production techniques. In this study, we successfully fabricate n-type Bi2Te2.7Se0.3 material by a combination of mass production powder metallurgy techniques, gas atomization, and spark plasma sintering. In addition, to examine the effects of hydrogen reduction in the microstructure, the thermoelectric and mechanical properties are measured and analyzed. Here, almost 60% of the oxygen content of the powder are eliminated after hydrogen reduction for 4 h at 360°C. Micrographs of the powder show that the reduced powder had a comparatively clean surface and larger grain sizes than unreduced powder. The density of the consolidated bulk using as-atomized powder and reduced atomized powder exceeds 99%. The thermoelectric power factor of the sample prepared by reduction of powder is 20% better than that of the sample prepared using unreduced powder.
        4,000원
        31.
        2016.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        P-type ternary Bi0.5Sb1.5Te3 alloys are fabricated via mechanical alloying (MA) and spark plasma sintering (SPS). Different ball sizes are used in the MA process, and their effect on the microstructure; hardness, and thermoelectric properties of the p-type BiSbTe alloys are investigated. The phases of milled powders and bulks are identified using an X-ray diffraction technique. The morphology of milled powders and fracture surface of compacted samples are examined using scanning electron microscopy. The morphology, phase, and grain structures of the samples are not altered by the use of different ball sizes in the MA process. Measurements of the thermoelectric (TE) transport properties including the electrical conductivity, Seebeck coefficient, and power factor are measured at temperatures of 300- 400 K for samples treated by SPS. The TE properties do not depend on the ball size used in the MA process.
        4,000원
        33.
        2015.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The purpose of this paper is to investigate the application of thermoelectric technology to concrete structures for harvesting solar energy that would otherwise be wasted. In various fields of research, thermoelectric technology using a thermoelectric module is being investigated for utilizing solar energy. METHODS: In our experiment, a halogen lamp was used to produce heat energy instead of the solar heat. A data logger was used to record the generated voltage over time from the thermoelectric module mounted on a concrete specimen. In order to increase the efficiency of energy harvesting, various factors such as color, architecture, and the ability to prevent heat absorption by the concrete surface were investigated for the placement of the thermoelectric module. RESULTS : The thermoelectric module produced a voltage using the temperature difference between the lower and upper sides of the module. When the concrete specimen was coated with an aluminum foil, a high electric power was measured. In addition, for the power generated at low temperatures, it was confirmed that the voltage was generated steadily. CONCLUSIONS: Thermoelectric technology for energy harvesting can be applied to concrete structures for generating electric power. The generated electricity can be used to power sensors used in structure monitoring in the future.
        4,000원
        34.
        2015.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Bi2Te3 related compounds show the best thermoelectric properties at room temperature. However, n-type Bi2Te2.7Se0.3 showed no improvement on ZT values. To improve the thermolectric propterties of n-type Bi2Te2.7Se0.3, this research has Cu-doped n-type powder. This study focused on effects of Cu-doping method on the thermoelectric properties of n-type materials, and evaluated the comparison between the Cu chemical and mechanical doping. The synthesized powder was manufactured by the spark plasma sintering(SPS). The thermoelectric properties of the sintered body were evaluated by measuring their Seebeck coefficient, electrical resistivity, thermal conductivity, and hall coefficient. An introduction of a small amount of Cu reduced the thermal conductivity and improved the electrical properties with Seebeck coefficient. The authors provided the optimal concentration of Cu0.1Bi1.99Se0.3Te2.7. A figure of merit (ZT) value of 1.22 was obtained for Cu0.1Bi1.9Se0.3Te2.7 at 373K by Cu chemical doping, which was obviously higher than those of Cu0.1Bi1.9Se0.3Te2.7 at 373K by Cu mechanical doping (ZT=0.56) and Cu-free Bi2Se0.3Te2.7 (ZT=0.51).
        4,000원
        35.
        2015.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The porous Mg3Sb2 based compounds with 60~70% of relative density were prepared by powder compaction at room temperature and reactive liquid phase sintering at 1023 K for 4hrs. The stoichiometric Mg3Sb2 compounds were synthesized from elemental Sb and Mg powder in the mixing range of 61~63 at% Mg. The increased scattering effect due to the micro-pores reduced the mobility of the charge carrier and the phonon, which caused the electrical conductivity and the thermal conductivity to decrease, respectively. But the scattering effect was greater for the electrical conductivity than for the thermal conductivity. Excess Mg alloyed in the Mg3Sb2 compounds decreased the electrical conductivity, but had no effect on the thermal conductivity. On the other hand, the large increase of the Seebeck coefficient was the result of a decrease in the charge carrier density due to the excess Mg. Dimensionless figure of merit of the porous Mg3Sb2 compound reached a maximum value of 0.28 at 61 at% Mg. The obtained value was similar to that of Mg3Sb2 compounds having little pores.
        4,000원
        36.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: An conventional method for electric power generation is converting thermal energy into mechanical energy then to electrical energy. Due to environmental issues such as global warming related with CO2 emission etc., were the limiting factor for the energy resources which resulting in extensive research and novel technologies are required to generate electric power. Thermal energy harvesting using thermoelectric generator is one of energy harvesting technologies due to diverse advantages for new green technology. This paper presents a possibility of application of the thermoelectric generator、s application in the direct exchange of waste solar energy into electrical power in road space. METHODS : To measure generated electric power of the thermoelectric generator, data logger was adopted as function of experimental factors such as using cooling sink, connection methods etc. Also, the thermoelectric generator、s behavior at low ambient temperature was investigated as measurement of output voltage vs. elapsed times. RESULTS: A few temperature difference between top an bottom of the thermoelectric generator is generated electric voltage. Components of an electrical circuit can be connected in various ways. The two simplest of these are called series and parallel and occur so open. Series shows slightly better performance in this study. An installation of cooling sink in the thermoelectric generator system was enhanced the output of power voltage. CONCLUSIONS : In this paper, a basic concepts of thermoelectric power generation is presented and applications of the thermoelectric generator to waste solar energy in road is estimated for green energy harvesting technology. The possibility of usage of thermoelectric technology for road facilities was found under the ambient thermal gradient between two surfaces of the thermoelectric module. An experiment results provide a testimony of the feasibility of the proposed environmental energy harvesting technology on the road facilities.
        4,000원
        37.
        2013.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon nanotube-dispersed bismuth telluride matrix (CNT/Bi2Te3) nanopowders were synthesized by chem- ical routes followed by a ball-milling process. The microstructures of the synthesized CNT/Bi2Te3 nanopowders showed the characteristic microstructure of CNTs dispersed among disc-shaped Bi2Te3 nanopowders with as an average size of 500 nm in-plane and a few tens of nm in thickness. The prepared nanopowders were sintered into composites with a homogeneous dispersion of CNTs in a Bi2Te3 matrix. The dimensionless figure-of-merit of the composite showed an enhanced value compared to that of pure Bi2Te3 at the room temperature due to the reduced thermal conductivity and increased electrical conductivity with the addition of CNTs.
        4,000원
        38.
        2013.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Mg3-xZnxSb2 powders with x = 0-1.2 were fabricated by mechanical alloying in a planetary ball mill with a speed of 350 rpm for 24 hrs and then hot pressed under a pressure of 70 MPa at 773 K for 2 hrs. It was found that there were systematic shifts in the X-ray diffraction peaks of Mg3Sb2 (x = 0) toward a higher angle with increasing Zn for both the powder and the bulk sample and finally the phase of Mg1.86Zn1.14Sb2 was formed at the Zn content of x = 1.2. The Mg3-xZnxSb2 compounds had nano-sized grains of 21-30 nm for the powder and 28-66 nm for the hot pressed specimens. The electrical conductivity of hot pressed Mg3-xZnxSb2 increased with increasing Zn content and temperature from 33 Sm-1 for x = 0 to 13,026 Sm-1 for x = 1.2 at 323 K. The samples for all the compositions from x = 0 to x = 1.2 had positive Seebeck coefficients, which decreased with increasing Zn content and temperature, which resulted from the increased charge carrier concentration. Most of the samples had relatively low thermal conductivities comparable to the high performance thermoelectric materials. The dimensionless figure of merit of Mg3-xZnxSb2 was directly proportional to the Zn content except for the compound with Zn = 1.2 at high temperature. The Mg3-xZnxSb2 compound with Zn = 0.8 had the largest value of ZT, 0.33 at 723 K.
        4,000원
        39.
        2012.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 수산 폐기물인 굴패각을 공조시스템의 수분 흡착제로 사용하기 위한 가능성을 실험을 통해 살펴본 기초적인 연구이다. 연구의 주된 목적은 굴패각의 제습성능과 열전소자의 냉각효과를 파악하는 것이며 본 연구를 통해 굴패각은 공조시스템 내에서 사용가능한 수분 흡착제로서의 성능을 충분히 가지고 있으며, 또한 냉각효과를 통해 흡착성능을 크게 향상시킬 수 있다는 것을 알았다. 본 시스템은 신재생에너지인 태양광을 이용하기 때문에 시스템의 구동에 필요한 다른 전원은 필요 없어 환경적으로도 매우 바람직한 연구이다.
        4,000원
        40.
        2012.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Bismuth antimony telluride (BiSbTe) thermoelectric materials were successfully prepared by a spark plasma sintering process. Crystalline BiSbTe ingots were crushed into small pieces and then attrition milled into fine powders of about 300 nm ~ 2μm size under argon gas. Spark plasma sintering was applied on the BiSbTe powders at 240, 320, and 380˚C, respectively, under a pressure of 40 MPa in vacuum. The heating rate was 50˚C/min and the holding time at the sintering temperature was 10 min. At all sintering temperatures, high density bulk BiSbTe was successfully obtained. The XRD patterns verify that all samples were well matched with the Bi0.5Sb1.5Te3. Seebeck coefficient (S), electric conductivity (σ) and thermal conductivity (k) were evaluated in a temperature range of 25~300˚C. The thermoelectric properties of BiSbTe were evaluated by the thermoelectric figure of merit, ZT (ZT = S2σT/k). The grain size and electric conductivity of sintered BiSbTe increased as the sintering temperature increased but the thermal conductivity was similar at all sintering temperatures. Grain growth reduced the carrier concentration, because grain growth reduced the grain boundaries, which serve as acceptors. Meanwhile, the carrier mobility was greatly increased and the electric conductivity was also improved. Consequentially, the grains grew with increasing sintering temperature and the figure of merit was improved.
        4,000원
        1 2 3 4 5