검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 118

        41.
        2018.10 서비스 종료(열람 제한)
        Concrete has recently been modified to have various performance and properties. However, the conventional method for predicting the compressive strength of concrete has been suggested by considering only a few influential factors. so, In this study, nine influential factors (W/B ratio, Water, Cement, Aggregate(Coarse, Fine), Fly ash, Blast furnace slag, Curing temperature, and humidity) of papers opened for 10 years were collected at 4 conferences in order to know the various correlations among data and the tendency of data. The selected mixture and compressive strength data were used for learning the Deep Learning Algorithm to derive a prediction model. The purpose of this study is to suggest a method of constructing a prediction model that predicts the compression strength with high accuracy based on Deep Learning Algorithms.
        42.
        2018.10 서비스 종료(열람 제한)
        Prediction of compressive strength of concrete by Maturity Method is applied in construction site. However, due to the use of wired type high-priced equipment, economic efficiency and workability are falling. In this study, a newly developed concrete embedded wireless sensor is used to perform a mock-up test. Next, the concrete compressive strength of the Maturity Method is predicted using Saul and Plowman's function as measured temperature data. The predicted concrete strength at the beginning of the age was the actual strength and stiffness, but the error rate was less than 1% at 28th day.
        43.
        2018.04 서비스 종료(열람 제한)
        This paper presents the findings of the study conducted to evaluate workability and compressive strength characteristics of rapid-setting concrete containing metakaolin. The experimental variable selected was the rate of cement replacement with metakaolin at 0, 5, 10, and 15 percent. The findings are summarized as follows: compared with the control specimens with no replacement rate, the workability and compressive strength of the concrete with 5% of cement replaced with metakaolin were comparable to those of control specimens at 4hours; however, at 72 hours, the compressive strength of the concrete with the same replacement rate was larger than the strength of the control specimens by 4.1%, while no increase in strength was observed at higher replacement rates, implying that the optimum replacement rate of cement with metakaolin is 5%.
        44.
        2018.04 서비스 종료(열람 제한)
        Filler material (concrete or mortar) has been used for shielding radioactive waste, however, it is proceeded out evaluation for radiation shielding performance. So, it is needed to check the property in the shielding performance. Therefore, in this paper, mechanical properties of concrete was evaluated for the applicability using heavyweight waste glass as fine aggregate of filler material. From the test results, compressive and elasticity modulus were significantly affected by substitution of heavyweight waste glass, however, it could be improved the performance by using mineral admixture as binder.
        45.
        2018.04 서비스 종료(열람 제한)
        The purpose of this study is to investigate the effects of reinforcement arrangements on the high strength of concrete and to present the quantitative values. To complete this research, two types of concrete strengths (40 MPa and 60 MPa), two types of reinforcing bar diameters (10 ㎜ and 13 ㎜), and seven types of specimens with or without reinforcement arrangements were prepared and tested for compressive strength. As a result, the strength of the cores containing the reinforcement can be predicted to have 82% - 94% of the strength of the cores without reinforcement.
        46.
        2018.04 서비스 종료(열람 제한)
        In Korea, inspection and precise safety diagnosis is regularly carried out to maintain and manage the main tunnel(NATM) which has been passed ten years after completion. In this study, we collected the laboratory test results of the concrete lining in the existing road and railway tunnels, and analyzed the correlation between compressive strength and unit mass of concrete. It is hoped that it will be used for efficient maintenance and management work of tunnels in the future.
        47.
        2018.03 KCI 등재 서비스 종료(열람 제한)
        본 연구는 콘크리트 산업에 있어 자원 고갈, 환경 문제 등을 대처할 수 있는 순환골재의 활용을 촉진하며 순환골재콘크리트의 레미콘 실생산을 위한 기초적 연구로서, 순환골재 사용량에 따른 슬럼프 고정 순환골재콘크리트의 물시멘트비 변화 및 물리적 특성을 실험하고 그 결과를 회귀분석하여 순환골재콘크리트의 압축강도 추정을 위한 단위시멘트량, 순환골재의 사용량, 물시멘트비 등 레미콘 생산 조건을 검토하여 다음과 같은 결론을 얻었다. 순환골재를 사용한 콘크리트는 목표 슬럼프를 유지하기 위해서는 단위수량 증가가 요구되며, 순환굵은골재 보다 순환잔골재의 치환에 더 많은 단위수량의 증가가 필요하였다. 순환잔골재의 치환율은 60%이하는 레미콘 품질기준에 벗어나지 않는 공기량 확보가 가능하였다. 순환골재를 사용한 콘크리트의 압축강도는 순환골재의 치환율이 증가할수록 감소하는 것으로 나타났으며, 특히 순환잔골재를 100% 치환한 경우 압축강도는 25%정도 저하하였다. 순환골재를 사용한 콘크리트의 배합인자에 따른 압축강도의 상관관계를 분석한 결과, 순환잔골재>물시멘트비>공기량 순으로 영향을 미치는 것으로 나타났다.
        48.
        2017.10 KCI 등재 서비스 종료(열람 제한)
        In this study, alkali-activated slag (AAS) concrete made with blast furnace slag (BFS) was investigated as a replacement for ordinary Portland cement (OPC) concrete for changes in the compressive strength before and after CO2 exposure and chemical reactions with CO2. Before CO2 exposure, the compressive strength of AAS concrete was found to be up to 21 MPa, which was higher than that of OPC concrete. Exposing AAS concrete to CO2 at 5,000 ppm for 28 days did not significantly change the compressive strength. In contrast, the compressive strength of OPC concrete decreased by 13% in the same conditions. In addition, AAS concrete had the highest CO2 capture capacity of greater than 50 g CO2/kg, while the CO2 capture capacity of OPC concrete was only 2.5 g CO2/kg. Rietveld analyses using XRD results showed that fractions of main calcium-silicate-hydration (C-S-H) gels on the surface of AAS concrete did not significantly drop after CO2 exposure; the C-S-H gel on the AAS concrete was continuously produced by reacting with the SiO2 produced after the reaction with CO2 and Ca(OH)2 inside the concrete, with the result that the compressive strength of AAS concrete did not change after CO2 exposure. Thus, AAS concrete can be applied to CO2-rich environments as both a stable construction material and a CO2 sequestrate agent.
        49.
        2017.09 서비스 종료(열람 제한)
        The compressive strengths of concrete in old drainage structures were measured by core test and non-destructive testing, and the neutralization depths were estimated. There are a high correlation between the core and non-destructive testing compressive strength and the carbonation depth.
        50.
        2017.09 서비스 종료(열람 제한)
        The conventional method for estimating compressive strength of concrete has been suggested by considering only 1 to 3 influential factors. In this study, seven influential mixture factors (Water-Cement Ratio, Water, Cement, Fly ash, Blast furnace slag, Curing temperature, and humidity) of papers opened for 10 years were collected at three conferences in order to know tendency of data. The purpose of this paper is to estimate compressive strength more accurately by applying it to algorithm of the Deep learning.
        51.
        2017.09 서비스 종료(열람 제한)
        For the purpose of evaluating the strength of high-strength concrete, the strength of small diameter core was compared with 100, 50, and 30 mm cores. In case of high strength concrete, the smaller the core diameter, the lower the strength was. It is probably due to the disturbance of specimen during coring. Therefore, it is considered that it is difficult to apply in the field.
        52.
        2017.08 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 휨을 받는 압축강도 80 MPa 수준의 고강도 콘크리트 부재의 구조거동 실험 연구를 수행하였다. 실험변수는 보통(SD 400) 및 고강도(SD 600)철근, 0.98~1.58%의 종방향 철근비, 200×250, 200×300 mm의 단면크기를 고려하였다. 9개의 보 부재를 제작하여 휨 실 험을 수행하였으며 극한휨강도, 하중-처짐 관계, 균열 형태, 파괴형상 및 연성을 파악하였다. 실험결과는 철근비가 증가함에 따라 휨강도는 증 가하고 연성은 감소한다. 또한, 철근비가 증가함에 따라 균열의 개수가 증가하며 균열폭은 감소하는 경향을 나타내었다. 철근의 강도 등급에 따른 하중-균열폭 관계는 뚜렷한 차이를 나타내지 않는다. 콘크리트 비선형거동 해석을 수행하였으며, 극한하중 예측값과 측정값을 비교하였 다. 고강도 콘크리트의 휨거동 예측 결과는 실험부재의 휨강도를 전반적으로 과소평가하고 있다.
        53.
        2017.05 KCI 등재 서비스 종료(열람 제한)
        초고성능 콘크리트와 고연성 무시멘트 복합재료는 높은 압축강도 및 높은 연성 등 재료의 우수한 성능으로 인하여 유망한 건설재 료로 분류되고 있다. 이 연구의 목적은 초고성능 콘크리트와 고연성 무시멘트 복합재료의 압축강도와 인장거동에 대하여 실험적으로 조사하 여 성능을 비교하는 것이다. 이를 위하여 밀도, 압축강도, 일축인장실험 등 일련의 실험을 수행하였다. 실험결과 알칼리 활성 슬래그 기반 고연 성 무시멘트 복합재료의 압축강도와 인장강도는 초고성능 콘크리트의 압축강도와 인장강도에 비하여 낮게 나타났지만, 인장하중 하에서 알칼 리 활성 슬래그 기반 고연성 무시멘트 복합재료의 인장변형성능 및 인성은 초고성능 콘크리트의 인장변형성능 및 인성에 비하여 높은 것으로 나타났다. 또한 알칼리 활성 슬래그 기반 무시멘트 페이스트에 폴리에틸렌섬유를 보강하여 7.89 %에 달하는 높은 인장변형성능을 확보할 수 있는 것으로 나타났다.
        54.
        2017.04 서비스 종료(열람 제한)
        From the test results, it was found that the compressive strength and the resistance of chloride ion penetration were evaluated the slag content of the concrete for bridge pavement. Compressive strength test results showed that initial strength was decreased as slag replacement ratio increased. The chlorine ion penetration performance increased with increasing strength.
        55.
        2017.04 서비스 종료(열람 제한)
        The purpose of this study is to investigate the compressive strengths of charcoal concrete. Compression experiment was conducted for specimens with various replacement ratio (0%, 10%, 20%) of charcoal. From the test results, it was shown that the compressive strengths of charcoal concrete were reduced with increasing replacement ratio of charcoal.
        56.
        2017.04 서비스 종료(열람 제한)
        This paper examines the effect of steel fiber volume fraction on compressive and flexural properties of high-strength concrete with compressive strength of 40 MPa. The fiber volume fractions used in this study consist of 0.5, 0.75 and 1.0%. The prisms with 150x150x550 mm were made and tested in accordance with EN-14651.
        57.
        2017.01 KCI 등재 서비스 종료(열람 제한)
        From the test results, it was found that the compressive strength and the resistance of chloride ion penetration were evaluated the slag content of the concrete for bridge pavement. Compressive strength test results showed that initial strength was decreased as slag replacement ratio increased. The chlorine ion penetration performance increased with increasing strength.
        58.
        2017.01 KCI 등재 서비스 종료(열람 제한)
        This study investigated the compressive strength characteristics of concrete and mortar containing waste pottery fine powder. To identify the effects of waste pottery fine powder on the compressive strength of concrete and mortar, cement was replaced with waste pottery fine powder at 5, 10 and 15% rates and the variations in compressive strength were evaluated. For high strength concrete, compared with a control mix, 5% replacement resulted in the reduction of 3.4% in compressive strength at 7 days; however, at 28 days, the strength actually increased by 2.5%. For normal strength concrete, compared with a control mix, 5% replacement resulted in the reduction of 20.4% in compressive strength at 7 days, and 14% reduction at 28 days. As for the mortar, at 5% replacement, compared with a control mortar mix, compressive strength of mortar decreased by 3% at 7 days, while an increase of 5.9% was observed at 28 days. Therefore, the optimum replacement rate of cement with waste pottery fine powder appears to be 5%.
        59.
        2016.10 서비스 종료(열람 제한)
        This paper describes the findings of the study conducted to evaluate compressive strength characteristics of high-strength concrete containing waste pottery fine powder. The experimental variables selected were 5, 10, and 15 percent replacements of cement with waste pottery fine powder. The findings are summarized as follows: (1) compared with the strength of the control specimens with no replacement rate, compressive strength of the concrete at 7days decreased by 4% at 5% replacement rate of cement with waste pottery fine powder, but (2) compressive strength of the concrete at 28days increased slightly by 1.3%..
        60.
        2016.10 서비스 종료(열람 제한)
        The purpose of the present study is to investigate some effects of concrete according to addition of blast furnace slag and sulfuric alkali-activator. Blast furnace slag was used at 30~80% replacement by weight of cement, and liquid sulfur having NaOH additives was chosen as the alkaline activator. In order to evaluate characteristics of blast furnace slag concrete with sulfuric alkali activators, compressive strength test, carbonation test were performed.
        1 2 3 4 5