검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2,183

        121.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Molybdenum trioxide (MoO3) is used in various applications including sensors, photocatalysts, and batteries owing to its excellent ionic conductivity and thermal properties. It can also be used as a precursor in the hydrogen reduction process to obtain molybdenum metals. Control of the parameters governing the MoO3 synthesis process is extremely important because the size and shape of MoO3 in the reduction process affect the shape, size, and crystallization of Mo metal. In this study, we fabricated MoO3 nanoparticles using a solution combustion synthesis (SCS) method that utilizes an organic additive, thereby controlling their morphology. The nucleation behavior and particle morphology were confirmed using ultraviolet-visible spectroscopy (UV-vis) and field emission scanning electron microscopy (FE-SEM). The concentration of the precursor (ammonium heptamolybdate tetrahydrate) was adjusted to be 0.1, 0.2, and 0.4 M. Depending on this concentration, different nucleation rates were obtained, thereby resulting in different particle morphologies.
        4,000원
        122.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The enamel powders used traditionally in Korea are produced by a ball-milling process. Because of their irregular shapes, enamel powders exhibit poor flowability. Therefore, polygonal enamel powders are only used for handmade cloisonné crafts. In order to industrialize or automate the process of cloisonné crafts, it is essential to control the size and shape of the powder. In this study, the flowability of the enamel powders was improved using the spheroidization process, which employs the RF plasma treatment. In addition, a simple grid structure and logo were successfully produced using the additive manufacturing process (powder bed fusion), which utilizes spherical enamel powders. The additive manufacturing technology of spherical enamel powders is expected to be widely used in the field of cloisonné crafting in the future.
        4,000원
        123.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to investigate the densification behavior and the corresponding microstructural evolution of tantalum and tantalum-tungsten alloy powders for explosively formed liners. The inherent inhomogeneous microstructures of tantalum manufactured by an ingot metallurgy might degrade the capability of the warhead. Therefore, to overcome such drawbacks, powder metallurgy was incorporated into the near-net shape process in this study. Spark plasma-sintered tantalum and its alloys with finer particle sizes exhibited higher densities and lower grain sizes. However, they were contaminated from the graphite mold during sintering. Higher compaction pressures in die and isostatic compaction techniques also enhanced the sinterability of the tantalum powders; however, a full densification could not be achieved. On the other hand, the powders exhibited full densification after being subjected to hot isostatic pressing over two times. Consequently, it was found that the hot isostatic-pressed tantalum might exhibit a lower grain size and a higher density as compared to those obtained in previous studies.
        4,000원
        124.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This paper presents the experimental results of tests conducted on concrete produced with air-cooled (AS) and water-cooled (WS) ground blast-furnace slag exposed to multi-deterioration environments of carbonation and scaling. METHODS : Carbonated and uncarbonated concrete specimens were regularly monitored according to the ASTM C 672 standard to evaluate the durability of concrete exposed to both scaling and combined carbonation and scaling conditions. Additionally, mechanical properties, such as compressive strength, flexural strength, and surface electric resistivity, were analyzed. RESULTS : It was found that concrete specimens produced with AS and WS had a beneficial effect on the mechanical properties because of the latent hydraulic properties of the AS and WS mineral admixtures. Moreover, carbonated concrete showed good scaling resistance in comparison to uncarbonated concrete, particularly for concrete produced with AS and WS. CONCLUSIONS : The improved scaling resistance of carbonated concrete showed that AS is a suitable option for binders used in cement concrete pavements subjected to combined carbonation and scaling.
        4,000원
        125.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        전 세계적으로 건설폐기물에 의한 환경문제에 대한 관심이 증가하고 있다. 이에 따라 건설재료들에 대한 재활용방안 에 대한 연구가 많이 진행되고 있다. GFRP는 최근 구조물의 보강에 많이 사용되는 건설 재료이다. 본 연구에는 GFRP를 분쇄하 여 만든 재활용 GFRP파우더(RGP)의 잔골재 대체 가능성을 검토하고자 하였다. RGP는 GFRP의 제작 시 발생되는 GFRP 잉여물을 분쇄하여 사용하였다. RGP의 잔골재 치환율을 20%, 40% 60% 80%로 설정하였다. RGP가 혼합된 시멘트 모르타르의 재료 성능을 검토하기 위하여 압축강도, 쪼갬인장강도 및 휨 강도를 측정하였다. 실험결과, RGP의 혼입으로 시멘트 모르타르의 기초물성이 증가하는 경향이 나타났다. 본 연구결과는 장기적으로 GFRP의 건설재료로의 재활용을 위한 기초자료로 활용이 가능할 것으로 판단된다.
        4,000원
        129.
        2020.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 양봉산물로서의 가치 평가와 제품다양화를 위한 기초자료 제공을 위해 수벌번데기(16 ~ 20일령)의 영양성분분석 및 이를 이용한 추 출물을 제조하고 생리활성 효과를 검정하였다. 수벌번데기 동결건조 분말의 일반성분 분석 결과 수분 1.69 ± 0.07%, 조단백 48.52 ± 0.20%, 조지방 23.41 ± 0.14%, 조회분 4.05 ± 0.02% 였고, vitamin C 14.92 ± 0.52 mg/100 g, vitamin E 6.06 ± 0.11 mg α-TE/100 g 이었으며, 무기성분은 K과 P 의 함량(mg/100g)이 각각 1,349.13 ± 34.57 및 1,323.55 ± 43.85로 가장 높게 함유되어 있고, Ca과 Fe의 함량은 각각 55.43 ± 1.51 및 5.49 ± 0.19가 함유된 것으로 분석되었다. 수벌번데기 동결건조분말 중에 함유된 지방산은 포화지방산(g/100g total fatty acids)이 약 59.62, 불포화지방산이 약 40.38 을 차지하였고, 고급지방산인 palmitic acid (C16:0)가 35.49 ± 0.08, 그리고 oleic acid (C18:1, n-9)가 35.91 ± 0.22로 다량 함유되어 있었다. 구성아미노산(g/100 g)은 총 38.99 ± 2.63이 함유된 것으로 분석되었고, 유리아미노산(mg/100 g)은 총 5,129.04 였으며, 이중 proline이 1,257.68, glutamic acid가 759.12로 가장 높았다. 수벌번데기 추출물의 DPPH radical-scavenging 활성(μg/ml)은 증류수추출 시 0.8, 50% EtOH 추출 시 3.2, 70% EtOH 추출 시 6.4, 그리고 EtOH 추출 시 32 농도에서 약 90% 이상이었다. 이와 같은 결과는 항산화능에 기여하는 주요 화합물이 극성계 화합물임으로 추정되었으며, 저분자단백질 또는 유리형 아미노산일 가능성이 높은 것으로 추측되었다. 이상의 결과와 같이 수벌번데기는 우수한 식품원료로의 사용과 새로운 기능성 소재로의 활용을 기대할 수 있을 것으로 사료된다.
        4,200원
        132.
        2020.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, partially dry transfer is investigated to solve the problem of fully dry transfer. Partially dry transfer is a method in which multiple layers of graphene are dry-transferred over a wet-transferred graphene layer. At a wavelength of 550 nm, the transmittance of the partially dry-transferred graphene is seen to be about 3% higher for each layer than that of the fully dry-transferred graphene. Furthermore, the sheet resistance of the partially drytransferred graphene is relatively lower than that of the fully dry-transferred graphene, with the minimum sheet resistance being 179 Ω/sq. In addition, the fully dry-transferred graphene is easily damaged during the solution process, so that the performance of the organic photovoltaics (OPV) does not occur. In contrast, the best efficiency achievable for OPV using the partially dry-transferred graphene is 2.37% for 4 layers.
        4,000원
        133.
        2020.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, a durability study is presented to enhance the mechanical properties of an Fe-Si-Al powderbased magnetic core, through the addition of graphite. The compressive properties of Fe-Si-Al-graphite powder mixtures are explored using discrete element method (DEM), and a powder compaction experiment is performed under identical conditions to verify the reliability of the DEM analysis. Important parameters for powder compaction of Fe-Si-Algraphite powder mixtures are identified. The compressibility of the powders is observed to increase as the amount of graphite mixture increases and as the size of the graphite powders decreases. In addition, the compaction properties of the Fe-Si-Al-graphite powder mixtures are further explored by analyzing the transmissibility of stress between the top and bottom punches as well as the distribution of the compressive force. The application of graphite powders is confirmed to result in improved stress transmission and compressive force distribution, by 24% and 51%, respectively.
        4,000원
        134.
        2020.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        CeO2 nanoparticles, employed in a lot of fields due to their excellent oxidation and reduction properties, are synthesized through a solvothermal process, and a high specific surface area is shown by controlling, among various process parameters in the solvothermal process, the type of solvent. The synthesized CeO2 nanoparticles are about 11~13 nm in the crystallite size and their specific surface area is about 65.38~84.65 m2/g, depending on the amount of ethanol contained in the solvent for the solvothermal process; all synthesized CeO2 nanoparticles shows a fluorite structure. The dispersibility and microstructure of the synthesized CeO2 nanoparticles are investigated according to the species of dispersant and the pH value of the solution; an improvement in dispersibility is shown with the addition of dispersants and control of the pH. Various dispersing properties appear according to the dispersant species and pH in the solution with the synthesized CeO2 nanoparticles, indicating that improved dispersing properties in the synthesized CeO2 nanoparticles can be secured by applying dispersant and pH control simultaneously.
        4,000원
        135.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study was to examine the effect of noni (Morinda citrifolia) powder on the physicochemical properties and antioxidant activities of ground pork meat. Four samples of ground pork meat were prepared as follow: CON without noni powder, NP0.5 with 0.5% noni powder, NP1.0 with 1.0% noni powder, and NP1.5 with 1.5% noni powder. The moisture content of CON was the highest (p<0.05). The ash, fiber, fat retention, hardness, cohesiveness, gumminess, chewiness, lightness, and yellowness increased with the addition of the noni powder (p<0.05). The protein, fat, water holding capacity, cooking yield, moisture retention, springiness,and redness of the cooked meat were not significantly different among the samples. The pH of CON was the highest among the samples (p<0.05). The TBARS of CON, NP0.5, NP1.0, and NP1.5 were 0.48, 0.41, 0.36 and 0.34 mg/kg, respectively, and the NP1.5 was the lowest (p<0.05). The DPPH radical scavenging activity of CON, NP0.5, NP1.0, and NP1.5 were 10.4%, 20.8%, 34.6% and 45.3%, respectively, and the NP1.5 was the highest (p<0.05). Consequently, these results support the possible use of noni powder for meat product industry, as addition of noni powder enhances the antioxidant activities of ground pork meat.
        4,000원
        136.
        2020.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, factors considered to be causes of promotion of densification of sintered pellets identified during phase change are reviewed. As a result, conclusions shown below are obtained for each factor. In order for MA powder to soften, a temperature of 1,000 K or higher is required. In order to confirm the temporary increase in density throughout the sintered pellet, the temperature rise due to heat during phase change was found not to have a significant effect. While examining the thermal expansion using the compressed powder, which stopped densification at a temperature below the MA powder itself, and the phase change temperature, no shrinkage phenomenon contributing to the promotion of densification is observed. The two types of powder made of Ti-silicide through heat treatment are densified only in the high temperature region of 1,000 K or more; it can be estimated that this is the effect of fine grain superplasticity. In the densification of the amorphous powder, the dependence of sintering pressure and the rate of temperature increase are shown. It is thought that the specific densification behavior identified during the phase change of the Ti-37.5 mol.%Si composition MA powder reviewed in this study is the result of the acceleration of the powder deformation by the phase change from non-equilibrium phase to equilibrium phase.
        4,000원
        137.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, interest in technology for eco-friendly energy harvesting has been increasing. Polyvinylidene fluoride (PVDF) is one of the most fascinating materials that has been used in energy harvesting technology as well as micro-filters by utilizing an electrostatic effect. To enhance the performance of the electrostatic effect-based nanogenerator, most studies have focused on enlarging the contact surface area of the pair of materials with different triboelectric series. For this reason, one-dimensional nanofibers have been widely used recently. In order to realize practical energy-harvesting applications, PVDF nanofibers are modified by enlarging their contact surface area, modulating the microstructure of the surface, and maximizing the fraction of the β-phase by incorporating additives or forming composites with inorganic nanoparticles. Among them, nanocomposite structures incorporating various nanoparticles have been widely investigated to increase the β-phase through strong hydrogen bonding or ion-dipole interactions with -CF2/CH2- of PVDF as well as to enhance the mechanical strength. In this study, we report the recent advances in the nanocomposite structure of PVDF nanofibers and inorganic nanopowders.
        4,000원
        138.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To develop Gastrodia elata (GE)-loaded particles for herbal extract dosage forms, various GE-loaded particles containing dextrin, isomalt, maltodextrin, and silicon dioxide as solidifying carriers in the GE water extract are prepared using the spray drying method. Their physical properties are evaluated using the repose angle, Hausner ratio, Carr's index, weight increase rate at 40oC/75% RH condition, and scanning electron microscopy (SEM). Particles made of dextrin improve the fluidity, compressibility, and water stability. In addition, 2% silicon dioxide increases the fluidity and moisture stability. The best flowability and compressibility of GE-loaded particles are observed with TP, dextrin, and silicon dioxide amounts in the ratio of 6/4/0.2 (34.29 ± 2.86°, 1.48 ± 0.03, and 38.29 ± 2.39%, repose angle, Hausner Ratio, and Carr’s index, respectively) and moisture stability with a 2% weight increase rate for 14 h at 40oC/75% RH condition. Therefore, our results suggest that the particles prepared by the spray drying method with dextrin and 2% silicon dioxide can be used as powerful particles to improve the flowability, compressibility, and moisture stability of GE.
        4,000원
        139.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nano-sized ZnSe particles are successfully synthesized in an aqueous solution at room temperature using sodium borohydride (NaBH4) and thioglycolic acid (TGA) as the reducing agent and stabilizer, respectively. The effects of the mass ratio of the reducing agent to Se, stabilizer concentration, and stirring time on the synthesis of the ZnSe nanoparticles are evaluated. The light absorption/emission properties of the synthesized nanoparticles are characterized using ultraviolet-visible (UV-vis) spectroscopy, photoluminescence (PL) spectroscopy, and particle size analyzer (PSA) techniques. At least one mass ratio (NaBH4/Se) of the reducing agent should be added to produce ZnSe nanoparticles finer than 10 nm and to absorb UV–vis light shorter than the ZnSe bulk absorption wavelength of 460 nm. As the ratio of the reducing agent increases, the absorption wavelengths in the UV-vis curves are blue-shifted. Stirring in the atmosphere acts as a deterrent to the reduction reaction and formation of nanoparticles, but if not stirred in the atmosphere, the result is on par with synthesis in a nitrogen atmosphere. The stabilizer, TGA, has an impact on the Zn precursor synthesis. The fabricated nanoparticles exhibit excellent photo-absorption/discharge characteristics, suggesting that ZnSe nanoparticles can be alloyed without the need for organic solutions or high-temperature environments.
        4,000원
        140.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The automotive industry has focused on the development of metallic materials with high specific strength, which can meet both fuel economy and safety goals. Here, a new class of ultrafine-grained high-Mn steels containing nano-scale oxides is developed using powder metallurgy. First, high-energy mechanical milling is performed to dissolve alloying elements in Fe and reduce the grain size to the nanometer regime. Second, the ball-milled powder is consolidated using spark plasma sintering. During spark plasma sintering, nanoscale manganese oxides are generated in Fe-15Mn steels, while other nanoscale oxides (e.g., aluminum, silicon, titanium) are produced in Fe-15Mn-3Al-3Si and Fe-15Mn-3Ti steels. Finally, the phases and resulting hardness of a variety of high-Mn steels are compared. As a result, the sintered pallets exhibit superior hardness when elements with higher oxygen affinity are added; these elements attract oxygen from Mn and form nanoscale oxides that can greatly improve the strength of high-Mn steels.
        4,000원