검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 773

        141.
        2018.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Prior to the experimental and production stages of the center pillar, a structural analysis must be carried out at the design stage. The commercial software for the structural analysis at the design stage provides benefits such as cost-effective and time economy. In this study, the structural analysis was performed to investigate the stress and displacement characteristics of the center pillar for five types of the applied loads using SolidWorks. The equivalent stress was relatively larger on the outside plate than the inside plate. The maximum equivalent stress according to the change of the applied loads increased linearly in the range of 47~181%. The deformation was larger at the upper end of the center pillar, and the maximum displacement was linearly increased in the range of 35~187%. The analysis results of the center pillar according to the applied loads show that the location and distribution of the maximum stress and displacement of the center pillar can be predicted.
        4,000원
        142.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Laminated composite structures have started to play a very significant role in primary and secondary structural weight savings in high performance automobile industries. However, one of the main challenges in implementing these composites is the lack of understanding of the progress of the damage under various loading conditions. In order to understand the influence of design parameters related to the use of composite materials, a proper study of the laminated composite structures requires a complete failure analysis, which includes both initiation and propagation of damage. In this study, a new damage model was developed to predict the progressive damage of the composite, and the progress of damage was investigated by making center-notch and open-hole tensile test specimens for various lay-ups. The simulations, in agreement with experimental tests, indicate that the model is capable of predicting the failure load in open hole composite structures.
        4,000원
        143.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the structural analysis was performed by using Solidworks program to investigate the stress and displacement characteristics of upper desk and table arm depending on the types and positions of load applied to the height-adjustable table(Cases 1, 2, 3, 4). The simulation was used to model the table and create the mesh for computational analysis. The height-adjustable table consists of three parts, upper desk, table arm and support body. Case 3 with the side concentrated load showed the maximum stress and maximum displacement at table arm and upper desk. From the stress and displacement characteristics of the upper desk and table arm, the stresses at the bending part of table arm and the deflection at the front part of upper desk were the greatest.
        4,000원
        145.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문은 아이소-지오메트릭 해석에서 h-세분화를 이용한 국부 세분화법과 이에 따른 설계 민감도 해석의 방법론을 연 구하였다. 다중 조밀도 방식을 이용하여 경계면에서 변위 적합조건을 만족하였고, 기존의 아이소-지오메트릭 해석의 텐서곱 으로 인해 발생하는 원치 않는 자유도 증가의 문제를 극복하였다. 해석에서의 변위 적합조건과 마찬가지로, 설계 민감도 해석에서도 변위 결과와 마찬가지로 똑같은 적합조건을 만족하도록 하는 방법론을 제시하였다. 수치 예제를 통하여 본 방법론의 효율성을 입증하였고, 특별히 응력 집중 문제에서의 결과와 민감도 값을 비교하며 경계면에서의 적합조건을 확인하였다.
        4,000원
        146.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문은 Ni - Al2O3로 구성된 금속-세라믹 이종 입자복합재의 2차원 미세구조(microstructure) 생성과 미세구조 스케일 (scale)에 따라 정의되는 계층적 모델들의 역학적 특성 분석에 관한 내용이다. 이종 입자복합재의 미세구조는 수학적인 RMDF(random morphology description functions) 모델링기법을 복합재의 2차원 RVE(representative volume element) 영 역에 적용하여 생성하였다. 그리고 미세구조 생성에 필요한 가우스 함수들의 개수에 따라 미세구조의 계층적 모델을 정의하였다. 한편 임의 미세구조 내 금속과 세라믹 입자가 차지하는 체적분율(volume fraction)은 RMDF 함수의 레벨을 조정함으로서 설정하였다. RMDF기법에 의한 미세구조들은 가우스 함수들의 개수가 일정할지라도 랜덤하게 생성된다. 이렇게 랜덤 하게 생성되는 미세구조들을 2차원 보(beam) 모델에 적용하여 미세구조의 스케일에 따른 수직응력과 전단응력의 계층적 변 동을 수치 해석적으로 고찰하였다. 또한, 균열해석을 통해 RMDF의 랜덤성과 가우스 함수들의 개수가 균열선단에서의 응력 값에 미치는 영향을 고찰하였다.
        4,000원
        147.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study was to develop a carbon fiber sheet with embedded fiber optic sensor for maintenance and performance improvement of aged concrete bridges. The carbon fiber sheet reinforcement method can separate the concrete and the carbon fiber sheet, so it is necessary to investigate the bond performance level. However, separation of concrete and carbon fiber sheet and investigation of concrete scaling phenomenon are carried out by human, so it is difficult to secure objectivity and accurate investigation. Therefore, in this study, a method to confirm the bond level of carbon fiber sheet by reinforcing with a carbon fiber sheet with a fiber optic sensor was examined. In this study, we investigated the strain of fiber optic sensor embedded in carbon fiber sheet to identify the separate point of carbon fiber sheet. The strain measured by fiber optic sensor was measured by numerical analysis. The strain rate of the carbon fiber sheet was compared with that of the carbon fiber sheet. As a result, it was confirmed that the strain was changed at the point where the carbon fiber sheet was separated, and the strain occurred in the carbon fiber sheet was examined to predict the separate point.
        4,000원
        150.
        2018.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Light weighting is one of techniques considered importantly at designing the mechanical structure using the light weight material. This study deals with aluminum-6061 and aluminum foam which stood in the spotlight of light weight material. And the finite element method for safety evaluation has been carried out in order to prevent from the damage and fatigue fracture due to crack appearing at the mechanical structure with this material. The simulation analysis as MT(middle tension) test was carried out by using the core of aluminum foam and the material laminated with sandwich structure of Al-6061. The mechanical structure is linked together with various parts and designed as the material with hole or crack. So, MT test is one of the test methods to evaluate the fatigue fracture characteristic of material and the strength inside material with the center crack by applying the load to the part connected pin. The real material strength is thought to be evaluated through the study result of MT test analysis.
        4,000원
        151.
        2018.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        V-Coupling is used as a mechanical fastener to connect the turbine housing and the bearing housing in a turbocharger. The back plate is located between the turbine housing and the bearing housing, which is compressed by the bolt clamping force of coupling to prevent gas leakage under turbocharger operation. This paper presents the theoretical and analytical methods to predict the sealing performance by calculating the contact pressures on the back plate. The mathematical model was constructed to derive the contact force on the back plate by considering the force transfer mechanism. And, finite element analysis was carried out to predict the contact pressures by applying the bolt load in the coupling system. As a result, the analysis results of the mathematical model are well consistent with the results of the finite element analysis. Therefore, in the early design stage of turbocharger coupling, mathematical model would be helpful to determine the design parameters.
        4,000원
        152.
        2018.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A study has been conducted on the structural analysis to reduce the light weight of the electric vehicle rotor shaft. ANSYS Static Structural was used for structural analysis. For weight reduction, the solid shaft was converted into a hollow shaft. The yield strength of the existing material SCM 440 is 655MPa, but to increase its safety, the yield strength is changed to 1,030MPa with SCM822H. At this time, weight reduction of about 47% was achieved. The resonance frequency of the rotor shaft was determined by vibration analysis and the structural safety was analyzed.
        4,000원
        153.
        2018.04 구독 인증기관·개인회원 무료
        In this study, finite element (FE) analysis was performed to evaluate the seismic performance of the water treatment plant, which is a major state of the art water treatment plant, to predict tensile cracks and compressive failure. The FE model simulation for two facilities of the water purification plant was made considering the initial conditions, boundary conditions and water effect. For the nonlinear dynamic analysis, seismic analysis was performed using ground acceleration. Tensile cracks and compressive failure are analyzed and the effects on the structures are analyzed. As a result of the analysis, tensile cracks can be predicted to occur in the main structure.
        154.
        2018.04 구독 인증기관·개인회원 무료
        A parametric study was carried out to gain an insight about structural performances considering abnormal behavior effects in high strength steel pipe strut system. Six load cases were considered as undesirable deflections of strut structures, which are basic load combination, excessive excavation situations, impact loading effects, additional overburden loads, load combinations, and 50% reduction of strut length. Subsequent simulation results present various influences of parameters on structural performances of the strut system. Based on the results, we propose methods to prevent unusual behaviors of pipe-type strut structures made of high strength steels.
        155.
        2018.04 구독 인증기관·개인회원 무료
        In this study, the structural analysis of the structural insulation panels with openings was carried out. The analytical results were compared with those of the previous structural performance tests. The structural behavior of the structural insulation panels subjected to eccentric axial load with the opening size, installation direction as parameters was analyzed through finite element analysis. Through this, we propose an optimal opening shape suitable for the structural insulation panel.
        156.
        2018.04 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to compare and evaluate the safety of the facility using the Abaqus finite element analysis program according to the material characteristics like steel and GFRP.
        3,000원
        157.
        2018.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The aim of this paper is to clarify the structural stability of 30m fly(maximum working radius of 30m) and telescopic boom with composition. In order to reduce the weight and insulate, the boom of special vehicle has a 3-stage telescopic boom of DOMEX960, pocket part of acetal, 2-stage refracting boom of ATOS80, insulation boom of glass fiber composition and effector. In this process, CATIA is applied to create 3D modeling, then ANSYS are performed the structural analysis. The structural analysis is performed for a case where the thickness of the insulating boom of the ATOS 80 is 7[㎜] and the thickness of the insulating boom of the FRP material is 15[㎜] and 16[㎜].
        4,000원
        158.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 실대형 실험과 구조해석을 통하여 현장에서 사용되는 기둥-서까래-도리, 기둥-도리-방풍벽 접합부를 적용한 강관 골조 플라스틱 연동온실의 정적 구조 성능을 분석하였다. 실대형 재하실험 결과는 접합부를 강접합으로 가정한 구조해석 결과와 비교하여 구조물의 횡방향 강성과 각 부재의 하중분담률에서 많은 차이를 보였다. 동고 높이에서 측정한 수평변위는 실험과 구조해석의 차이가 40% 이었고 수직변위는 89%의 차이를 보였다. S3 부재의 발생응력을 기준으로 한 각 부재별 하중분담률을 비교한 결과 실험과 구조해석에서 두 배 이상의 차이를 보이는 부재가 있었으며, 하부측벽이음(S2), 기둥 상부(S7) 등 주요 부재의 실험결과가 구조해석의 하중분담률을 재현하지 않았다. 현장에서 사용하는 접합부가 충분한 강성을 확보하지 않음으로써 구조물에 작용하는 외력을 각 부재에 적절하게 전달하지 못했으며 이로 인해 구조물의 강성이 저하되는 현상이 나타났다. 설계 단계에서 일반적으로 구조 해석에 의해 결정되는 구조성능의 신뢰도는 접합부의 특성을 보다 면밀하게 고려했는지 여부에 따라 좌우 될 수 있다. 따라서 온실 구조 성능에 대한 신뢰성을 높이기 위해서는 온실에 사용되는 다양한 접합부를 고려할 수 있는 구조해석 기술의 개발이 필요하며 설계 기준에서 상세 설계 방법을 보다 명확히 규정해야 할 것으로 판단된다.
        4,000원
        159.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: In this study, a three-dimensional nonlinear finite element analysis (FEA) model for airport concrete pavement was developed using the commercial program ABAQUS. Users can select an analysis method and set the range of input parameters to reflect actual conditions such as environmental loading.METHODS : The geometrical shape of the FEA model was chosen by considering the concrete pavement located in the third-stage construction site of Incheon International Airport. Incompatible eight-node elements were used for the FEA model. Laboratory test results for the concrete specimens fabricated at the construction site were used as material properties of the concrete slab. The material properties of the cement-treated base suggested by the Federal Aviation Administration(FAA) manual were used as those of the lean concrete subbase. In addition, preceding studies and pavement evaluation reports of Incheon International Airport were referred for the material properties of asphalt base and subgrade. The kinetic friction coefficient between the concrete slab and asphalt base acquired from a preceding study was used for the friction coefficient between the layers. A nonlinear temperature gradient according to slab depth was used as an input parameter of environmental loading, and a quasistatic method was used to analyze traffic loading. The average load transfer efficiency obtained from an Heavy falling Weight Deflectomete(HWD) test was converted to a spring constant between adjacent slabs to be used as an input parameter. The reliability of the FEA model developed in this study was verified by comparing its analysis results to those of the FEAFAA model.RESULTS : A series of analyses were performed for environmental loading, traffic loading, and combined loading by using both the model developed in this study and the FEAFAA model under the same conditions. The stresses of the concrete slab obtained by both analysis models were almost the same. An HWD test was simulated and analyzed using the FEA model developed in this study. As a result, the actual deflections at the center, mid-edge, and corner of the slab caused by the HWD loading were similar to those obtained by the analysis.CONCLUSIONS : The FEA model developed in this study was judged to be utilized sufficiently in the prediction of behavior of airport concrete pavement.
        4,000원
        160.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        One of the reasons why Louis I. Kahn is regarded as a pioneer of Post-Modern Architecture is that his works are interpreted as Structuralism and Post-structuralism in architecture. A. Lüchinger’s interpretation of Structuralism and M. Benedikt’s interpretation of Post-structuralism; especially Deconstruction Theory, in Kahn’s architecture must be proper cases for understanding this context. However, when we precisely analyze their insistence, several fallacies can be found with their incomplete grasp of Kahn’s architectural thinking. The most problematic thing is that they maximize fallibility with focusing only on the analysis of superficial phenomenon, such as formal composition, disposition of space, decorative features, and so on. Therefore, the meaning of architectural essence toward Post-Modern Architecture which Kahn had pursued during his lifetime is sometimes misinterpreted. For this reason, this paper attempt to reanalyze Kahn’s philosophy of architecture deeply with the view of aesthetics which has a key role in both overcoming their fallacies and illuminating the potentiality of Kahn’s architecture.
        4,600원