검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 296

        141.
        2014.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The contact mechanism of devices is usually researched at electrode contacts. However, the contact between a dielectric and channel at the MOS structure is more important. The graphene was used as a channel material, and the thin film transistor with MOS structure was prepared to observe the contact mechanism. The graphene was obtained on Cu foil by the thermal decomposition method with H2 and CH4 mixed gases at an ambient annealing temperature of 1000˚C during the deposition for 30 min, and was then transferred onto a SiO2/Si substrate. The graphene was doped in a nitrogen acidic solution. The chemical properties of graphene were investigated to research the effect of nitric atoms doping. The sheet resistance of graphene decreased after nitrogen acidic doping, and the sheet resistance decreased with an increase in the doping times because of the increment of negative charge carriers. The nitric-atom-doped graphene showed the Ohmic contact at the curve of the drain current and drain voltage, in spite of the Schottky contact of grapnene without doping.
        4,000원
        142.
        2014.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To obtain the transistor with ambipolar transfer characteristics, IGZO/SiOC thin film transistor was prepared on SiOC with various polarities as a gate insulator. The interface between a channel and insulator showed the Ohmic and Schottky contacts in the bias field of -5V ~ +5V. These contact characteristics depended on the polarities of SiOC gate insulators. The transfer characteristics of TFTs were observed the Ohmic contact on SiOC with polarity, but Schottky contact on SiOC with low polarity. The IGZO/SiOC thin film transistor with a Schottky contact in a short range bias electric field exhibited ambipolar transfer characteristics, but that with Ohmic contact in a short range electric field showed unipolar characteristics by the trapping phenomenon due to the trapped ionized defect formation.
        4,000원
        143.
        2014.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ultra-thin liquid films on solid substrates in contact with the saturated vapor are studied by using molecular dynamics simulation. The properties of evaporation and condensation of the films of various adsorptive strengths and thicknesses are obtained during the quasi-steady film evolution. Net condensations occur when the ultra-thin films on the high energy surface come into contact with the saturated vapor phase because the normal film pressure stays lower than the saturated vapor pressure. The net condensation rate is higher for the material combination of higher adsorptive strength. It becomes more so when the film thickness is of a lesser size. On the other hand, that of lower adsorptive strength has lower net condensation rate and depends less on the film thickness. Therefore, the size effect of the condensation phenomenon is more significant for the system of a higher adsorptive strength. This properties come from the state of ultra-thin film, which can be quantified by using disjoining pressure in the quasi-steady processes. These results have implications in practical problems concerning the moving contact line when the precursor film formation is critica
        4,000원
        144.
        2013.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A stoichiometric mixture of evaporating materials for ZnAl2Se4 single-crystal thin films was prepared in a horizontalelectric furnace. These ZnAl2Se4 polycrystals had a defect chalcopyrite structure, and its lattice constants were a0=5.5563Åand c0=10.8897Å.To obtain a single-crystal thin film, mixed ZnAl2Se4 crystal was deposited on the thoroughly etched semi-insulating GaAs(100) substrate by a hot wall epitaxy (HWE) system. The source and the substrate temperatures were 620oCand 400oC, respectively. The crystalline structure of the single-crystal thin film was investigated by using a double crystal X-ray rocking curve and X-ray diffraction ω-2θ scans. The carrier density and mobility of the ZnAl2Se4 single-crystal thin filmwere 8.23×1016cm−3 and 287m2/vs at 293K, respectively. To identify the band gap energy, the optical absorption spectra ofthe ZnAl2Se4 single-crystal thin film was investigated in the temperature region of 10-293K. The temperature dependence ofthe direct optical energy gap is well presented by Varshni's relation: Eg(T)=Eg(0)−(αT2/T+β). The constants of Varshni'sequation had the values of Eg(0)=3.5269eV, α=2.03×10−3eV/K and β=501.9K for the ZnAl2Se4 single-crystal thin film.The crystal field and the spin-orbit splitting energies for the valence band of the ZnAl2Se4 were estimated to be 109.5meVand 124.6meV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicatethat splitting of the ∆so definitely exists in the Γ5 states of the valence band of the ZnAl2Se4/GaAs epilayer. The threephotocurrent peaks observed at 10K are ascribed to the A1-, B1-exciton for n=1 and C21-exciton peaks for n=21.
        4,000원
        145.
        2013.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Magnetostrictive actuator is fabricated with epoxy bonding method instead of sputtering method in this study. Fabrication process and experimental measurement method for magneto-mechanical characteristics is proposed. For the design of highly flexible magnetostrictive actuator, TbDyFe epoxy bonding with SU-8 substrate is adopted. The fabrication process for SU-8 substrate and the epoxy bonding is suggested and magnetostrictive behavior is investigated. Variable magnetic field is applied to measure the various magnetostrictive characteristics and magnetostriction is measured with different waves and different magnitude of magnetic field.
        4,000원
        146.
        2013.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We investigated the characteristics of electroless plated Cu films on screen printed Ag/Anodized Al substrate. Cu plating was attempted using neutral electroless plating processes to minimize damage of the anodized Al substrate; this method used sodium hypophosphite instead of formaldehyde as a reducing agent. The basic electroless solution consisted of CuSO4·5H2O as the main metal source, NaH2PO2·H2O as the reducing agent, C6H5Na3O7·2H2O and NH4Cl as the complex agents, and NiSO4·6H2O as the catalyser for the oxidation of the reducing agent, dissolved in deionized water. The pH of the Cu plating solutions was adjusted using NH4OH. According to the variation of pH in the range of 6.5~8, the electroless plated Cu films were coated on screen printed Ag pattern/anodized Al/Al at 70˚C. We investigated the surface morphology change of the Cu films using FE-SEM (Field Emission Scanning Electron Microscopy). The chemical composition of the Cu film was determined using XPS (X-ray Photoelectron Spectroscopy). The crystal structures of the Cu films were investigated using XRD (X-ray Diffraction). Using electroless plating at pH 7, the structures of the plated Cu-rich films were typical fcc-Cu; however, a slight Ni component was co-deposited. Finally, we found that the formation of Cu film plated selectively on PCB without any lithography is possible using a neutral electroless plating process.
        4,000원
        147.
        2013.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper presents new type magnetostrictive optical systems. The suggested wireless optical systems are developed by using two types of magnetostrictive thin film actuators. The first is a seesaw type wireless-controlled compact optical switch, and another is a comb type TbDyFeNi thin film actuator by silicon micromachining techniques with DC magnetron sputtering. In the seesaw type, TbDyFe films are selectively deposited on the micromachined switch matrix. For the optical switching operation, switch is arranged in a 1×2 array (mirror size of 5mm × 800μm × 50μm) and has different length from the supporting point. Mirrors are also actuated by externally applied magnetic fields up to 0.5T. In the comb type, the effect of Ni content on the magneto-mechanical properties of the Tb0.24Dy0.76Fe2 system is investigated with the effect of deposited film thickness of TbDyFeNi on silicon substrate for wireless microactuator. As results, magneto-mechanical characteristics are investigated. using magnetization and deflected angle variation
        4,000원
        148.
        2013.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, BaTiO3 thin films were grown by RF-magnetron sputtering, and the effects of the thin film thickness on the structural characteristics of BaTiO3 thin films were systematically investigated. Instead of the oxide substrates generally used for the growth of BaTiO3 thin films, p-Si substrates which are widely used in the current semiconductor processing, were used in this study in order to pursue high efficiency in device integration processing. For the crystallization of the grown thin films, annealing was carried out in air, and the annealing temperature was varied from 700˚C. The changed thickness was within 200 nm~1200 nm. The XRD results showed that the best crystal quality was obtained for ample thicknesses 700 nm~1200 nm. The SEM analysis revealed that Si/BaTiO3 are good quality interface characteristics within 300 nm when observed thickness. And surface roughness observed of BaTiO3 thin films from AFM measurement are good quality surface characteristics within 300 nm. Depth-profiling analysis through GDS (glow discharge spectrometer) showed that the stoichiometric composition could be maintained. The results obtained in this study clearly revealed BaTiO3 thin films grown on a p-Si substrate such as thin film thickness. The optimum thickness was 300 nm, the thin film was found to have the characteristics of thin film with good electrical properties.
        4,000원
        149.
        2013.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We analysed interfacial traps in organic thin-film transistors (TFTs) in which pentacene and 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-pentacene) organic semiconductors were deposited by means of vacuum-thermal evaporation and drop-coating methods, respectively. The thermally-deposited pentacene film consists of dentritic grains with the average grain size of around 1 ?m, while plate-like crystals over a few hundred microns are observed in the solution-processed TIPS-pentacene film. From the transfer characteristics of both TFTs, lower subthreshold slope of 1.02 V/decade was obtained in the TIPS-pentacene TFT, compared to that (2.63 V/decade) of the pentacene transistor. The interfacial trap density values calculated from the subthreshold slope are about 3.4×1012/cm2 and 9.4×1012/cm2 for the TIPS-pentacene and pentacene TFTs, respectively. Herein, lower subthreshold slope and less interfacial traps in TIPS-pentacene TFTs are attributed to less domain boundaries in the solution-processed TIPS-pentacene film.
        4,000원
        150.
        2013.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 아세틸화된 메틸 셀룰로스를 복합박막 정삼투막의 지지층으로 사용하였다. 계면중합법을 이용하여 선택성이 우수한 폴리아미드 활성층을 다양한 지지층 위에 코팅하였다. 아세틸화된 메틸 셀룰로스 지지층 위에 코팅된 복합 박막 정삼투막의 구조와 성능을 다른 지지층 위에 코팅된 복합박막 정삼투막과 비교하였다. 실험적 결과는 아세틸화된 메틸 셀룰로스 지지층 위에 코팅된 복합박막 정삼투막의 성능이 다른 정삼투막들에 비해서 우수하였으며 이것은 구조적인 특성과 염의 낮은 역확산속도 때문인 것으로 사료된다.
        4,000원
        151.
        2013.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Magnetostrictive thin films can be applied in transmission system for the enhancement of energy efficiency. In this study, four kinds of substrates (Si, glass, Fe, polyimide) with the magnetostrictive thin film layers are prepared and investigated to characterize the magnetic and mechanical behaviors due to the substrates effects. The fabricated substrates have thicknesses of 50, 150 and 500um with cantilever shape. TbDyFe films are deposited by DC magnetron sputtering with 1~10m thick. The deposited film thicknesses are verified using X-ray diffraction. The magnetization of each sample is examined using VSM(Vibrating Sample Magnetometer) and magnetostriction is also measured using capacitance method to characterize magneto-mechanical behaviors. The magnetostriction results as deflections are compared and the results are discussed for micro actuator applications.
        4,000원
        152.
        2013.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Vanadium dioxide (VO2) is an attractive material for smart window applications where the transmittance of light can be automatically modulated from a transparent state to an opaque state at the critical temperature of ~68˚C. Meanwhile, F : SnO2 (F-doped SnO2, FTO) glass is a transparent conductive oxide material that is widely used in solar-energy-related applications because of its excellent optical and electrical properties. Relatively high transmittance and low emissivity have been obtained for FTO-coated glasses. Tunable transmittance corresponding to ambient temperature and low emissivity can be expected from VO2 films deposited onto FTO glasses. In this study, FTO glasses were applied for the deposition of VO2 thin films by pulsed DC magnetron sputtering. VO2 thin films were also deposited on a Pyrex substrate for comparison. To decrease the phase transition temperature of VO2, tungsten-doped VO2 films were also deposited onto FTO glasses. The visible transmittance of VO2/FTO was higher than that of VO2/pyrex due to the increased crystallinity of the VO2 thin film deposited on FTO and decreased interface reflection. Although the solar transmittance modulation of VO2/FTO was lower than that of VO2/pyrex, room temperature solar transmittance of VO2/FTO was lower than that of VO2/pyrex, which is advantageous for reflecting solar heat energy in summer.
        3,000원
        153.
        2013.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The ZnO thin films were grown on GaN template substrates by RF magnetron sputtering at different RF powers and n-ZnO/p-GaN heterojunction LEDs were fabricated to investigate the effect of the RF power on the characteristics of the n-ZnO/p-GaN LEDs. For the growth of the ZnO thin films, the substrate temperature was kept constant at 200˚C and the RF power was varied within the range of 200 to 500W at different growth times to deposit films of 100 nm thick. The electrical, optical and structural properties of ZnO thin films were investigated by ellipsometry, X-ray diffraction (XRD), atomic force microscopy (AFM), photoluminescence (PL) and by assessing the Hall effect. The characteristics of the n-ZnO/p-GaN LEDs were evaluated by current-voltage (I-V) and electroluminescence (EL) measurements. ZnO thin films were grown with a preferred c-axis orientation along the (0002) plane. The XRD peaks shifted to low angles and the surface roughness became non-uniform with an increase in the RF power. Also, the PL emission peak was red-shifted. The carrier density and the mobility decreased with the RF power. For the n-ZnO/p-GaN LED, the forward current at 20 V decreased and the threshold voltage increased with the RF power. The EL emission peak was observed at approximately 435 nm and the luminescence intensity decreased. Consequently, the crystallinity of the ZnO thin films grown with RF sputtering powers were improved. However, excess Zn affected the structural, electrical and optical properties of the ZnO thin films when the optimal RF power was exceeded. This excess RF power will degrade the characteristics of light emitting devices.
        4,000원
        154.
        2012.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Silica-based ceramic-matrix composites have shown promise as advanced materials for many applications such as chemical catalysts, ceramics, pharmaceuticals, and electronics. SiO2-CuO-CeO2 multi-component powders and their thin film, using an oxalic acid template as a chelating agent, have larger surface areas and more uniform pore size distribution than those of inorganic acid catalysts. SiO2-CuO-CeO2 composite powders were synthesized using tetraethylorthosilicate, copper (II) nitrate hemi (pentahydrate), and cerium (III) nitrate hexahydrate with oxalic acid as template or pore-forming agent. The process of thermal evolution, the phase composition, and the surface morphology of these powders were monitored by thermogravimetry-differential thermal analysis (TG-DTA), X-ray diffractometry (XRD), field-emission scanning electron microscopy (FE-SEM), and energy dispersive X-ray spectrometry (EDXS). The mesoporous property of the powders was observed by Brunner-Emmett-Teller surface (BET) analysis. The improved surface area of this powder template with oxalic acid was 371.4m2/g. This multi-component thin film on stainless-steel was prepared by sol-gel dip coating with no cracks.
        4,000원
        155.
        2012.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        TiO2 thin films consisting of positively charged poly(diallyldimethylammonium chloride)(PDDA) and negatively charged titanium(IV) bis(ammonium lactato) dihydroxide(TALH) were successfully fabricated on glass beads by a layer-by-layer(LBL) self-assembly method. The glass beads used here showed a positive charge in an acid range and negative charge in an alkaline range. The glass beads coated with the coating sequence of(PDDA/TALH)n showed a change in the surface morphology as a function of the number of bilayers. When the number of bilayers(n) of the(PDDA/TALH) thin film was 20, Ti element was observed on the surface of the coated glass beads. The thin films coated onto the glass beads had a main peak of the (101) crystal face and were highly crystallized with XRD diffraction peaks of anatase-type TiO2 according to an XRD analysis. In addition, the TiO2 thin films showed photocatalytic properties such that they could decompose a methyl orange solution under illumination with UV light. As the number of bilayers of the(PDDA/TALH) thin film increased, the photocatalytic property of the TiO2-coated glass beads increased with the increase in the thin film thickness. The surface morphologies and optical properties of glass beads coated with TiO2 thin films with different coating numbers were measured by field emission scanning electron microscopy(FE-SEM), X-ray diffraction(XRD) and by UV-Vis spectrophotometry(UV-vis).
        4,000원
        156.
        2012.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        유기 박막 트랜지스터 (organic thin-film transistors; OTFTs)는 유기 반도체 그리고 디스플레이와 같은 분야에 그들의 잠재적인 응용 가능성 때문에 많은 주목을 받고 있다. 하지만 급격한 산화 혹은 낮은 전기 이동도와 같은 단점으로 인하여 n-형 물질은 p-형 물질에 비해서 상대적으로 많은 연구가 진행되지 못한 실정이다. 따라서 본 논문에서는 n-형 반도체 물질인 [6,6]-phenyl-C61-butyricacidmethylester (PCBM)과 Poly(4-vinylphenol) (PVP)을 유기 절연막으로 이용하여 o-dichlorobenzene, toluene and chloroform과 같은 다양한 유기 용매를 사용한 플라스틱 기판에 유기트랜지스터를 제작하였고 유기 용매가 ODCB 경우 전계 효과 이동도는 약 0.034 cm2/Vs 그리고 점멸비(on/off ratio)는 ~1.3×105 으로 향상 되었다. 다양한 유기 용매의 휘발성에 따라서 PCBM TFT의 전기적 특성에 미치는 영향을 규명하였다.
        4,000원
        157.
        2012.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Chalcogenide-based semiconductors, such as CuInSe2, CuGaSe2, Cu(In,Ga)Se2 (CIGS), and CdTe have attracted considerable interest as efficient materials in thin film solar cells (TFSCs). Currently, CIGS and CdTe TFSCs have demonstrated the highest power conversion efficiency (PCE) of over 11% in module production. However, commercialized CIGS and CdTe TFSCs have some limitations due to the scarcity of In, Ga, and Te and the environmental issues associated with Cd and Se. Recently, kesterite CZTS, which is one of the In- and Ga- free absorber materials, has been attracted considerable attention as a new candidate for use as an absorber material in thin film solar cells. The CZTS-based absorber material has outstanding characteristics such as band gap energy of 1.0 eV to 1.5 eV, high absorption coefficient on the order of 104cm-1, and high theoretical conversion efficiency of 32.2% in thin film solar cells. Despite these promising characteristics, research into CZTS-based thin film solar cells is still incomprehensive and related reports are quite few compared to those for CIGS thin film solar cells, which show high efficiency of over 20%. The recent development of kesterite-based CZTS thin film solar cells is summarized in this work. The new challenges for enhanced performance in CZTS thin films are examined and prospective issues are addressed as well.
        4,800원
        158.
        2012.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Silicon-based thin film was prepared at room temperature by an electrochemical deposition method and a feasibility study was conducted for its use as an anode material in a rechargeable lithium battery. The growth of the electrodeposits was mainly concentrated on the surface defects of the Cu substrate while that growth was trivial on the defect-free surface region. Intentional formation of random defects on the substrate by chemical etching led to uniform formation of deposits throughout the surface. The morphology of the electrodeposits reflected first the roughened surface of the substrate, but it became flattened as the deposition time increased, due primarily to the concentration of reduction current on the convex region of the deposits. The electrodeposits proved to be amorphous and to contain chlorine and carbon, together with silicon, indicating that the electrolyte is captured in the deposits during the fabrication process. The silicon in the deposits readily reacted with lithium, but thick deposits resulted in significant reaction overvoltage. The charge efficiency of oxidation (lithiation) to reduction (delithiation) was higher in the relatively thick deposit. This abnormal behavior needs to clarified in view of the thickness dependence of the internal residual stress and the relaxation tendency of the reaction-induced stress due to the porous structure of the deposits and the deposit components other than silicon.
        4,000원
        159.
        2011.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A high-quality CIGS film with a selenization process needs to be developed for low-cost and large-scale production. In this study, we used Cu2In3, CuGa and Cu2Se sputter targets for the deposition of a precursor. The precursor deposited by sputtering was selenized in Se vapor. The precursor layer deposited by the co-sputtering of Cu2In3, CuGa and Cu2Se showed a uniform distribution of Cu, In, Ga, and Se throughout the layer with Cu, In, CuIn, CuGa and Cu2Se phases. After selenization at 550˚C for 30 min, the CIGS film showed a double-layer microstructure with a large-grained top layer and a small-grained bottom layer. In the AES depth profile, In was found to have accumulated near the surface while Cu had accumulated in the middle of the CIGS film. By adding a Cu-In-Ga interlayer between the co-sputtered precursor layer and the Mo film and adding a thin Cu2Se layer onto the co-sputtered precursor layer, large CIGS grains throughout the film were produced. However, the Cu accumulated in the middle of CIGS film in this case as well. By supplying In, Ga and Se to the CIGS film, a uniform distribution of Cu, In, Ga and Se was achieved in the middle of the CIGS film.
        4,000원
        160.
        2011.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Microelectromechanical systems (MEMS)-fabricated suspended devices were used to measure the in-plane electrical conductivity, Seebeck coefficient, and thermal conductivity of 304 nm and 516 nm thick InGaAlAs films with 0.3% ErAs nanoparticle inclusions by volume. The suspended device allows comprehensive thermoelectric property measurements from a single thin film or nanowire sample. Both thin film samples have identical material compositions and the sole difference is in the sample thickness. The measured Seebeck coefficient, electrical conductivity, and thermal conductivity were all larger in magnitude for the thicker sample. While the relative change in values was dependent on the temperature, the thermal conductivity demonstrated the largest decrease for the thinner sample in the measurement temperature range of 325 K to 425 K. This could be a result of the increased phonon scattering due to the surface defects and included ErAs nanoparticles. Similar to the results from other material systems, the combination of the measured data resulted in higher values of the thermoelectric figure of merit (ZT) for the thinner sample; this result supports the theory that the reduced dimensionality, such as in twodimensional thin films or one-dimensional nanowires, can enhance the thermoelectric figure of merit compared with bulk threedimensional materials. The results strengthen and provide a possible direction in locating and optimizing thermoelectric materials for energy applications.
        4,000원