검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 426

        161.
        2012.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The microstructures and mechanical properties of friction stir welded lap joints of Inconel 600 and SS 400 were evaluated; friction stir welding was carried out at a tool rotation speed of 200 rpm and welding speed of 100 mm/min. Electron back-scattering diffraction and transmission electron microscopy were introduced to analyze the grain boundary characteristics and the precipitates, respectively. Application of friction stir welding was notably effective at reducing the grain size of the stir zone. As a result, the reduced average grain size of Inconel 600 ranged from 20μm in the base material to 8.5μm in the stir zone. The joint interface between Inconel 600 and SS 400 showed a sound weld without voids and cracks, and MC carbides with a size of around 50 nm were partially formed at the Inconel 600 area of lap joint interface. However, the intermetallic compounds that lead to mechanical property degradation of the welds were not formed at the joint interface. Also, a hook, along the Inconel 600 alloy from SS 400, was formed at the advancing side, which directly brought about an increase in the peel strength. In this study, we systematically discussed the evolution of microstructures and mechanical properties of the friction stir lap joint between Inconel 600 and SS 400.
        4,000원
        162.
        2012.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        소듐냉각 고속로 (SFR) 핵연료 피복관 후보재료로 고려되고 있는 중형 규모의 HT9 단조품 소재에 대한 금속조직학적 영향을 고찰하였다. 시험 재료는 유도가열법을 이용하여 1.1톤 규모의 잉곳으로 성형한 후, 1170℃에서 고온 단조 및 공랭을 통하여 160mm 직경 및 7000mm 길이를 갖는 단조품으로 가공하여 반 경방향으로 미세조직의 변화를 관찰하였다. 시험 결과 시험 재료는 페라이트-마르텐사이트 조직을 보였 으며 합금 조성에 의하여 2~3%의 델타 페라이트 (delta ferrite)를 가짐과 동시에 반경방향의 냉각속도 차 이에 의하여 최대 15%의 변태 페라이트 (transformed ferrite)를 함유함이 관찰되었다. 냉각곡선의 모델 링과 시간-온도-변태 (TTT) 선도를 이용한 민감도 분석을 통하여 단조품의 직경을 120mm로 줄였을 경우 중심부의 변태 페라이트 형성을 억제할 수 있음을 제시하였다.
        4,000원
        163.
        2012.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The microstructure and tensile properties of Al-Mn/Al-Si hybrid aluminum alloys prepared by electromagnetic duocasting were investigated. Only the Al-Mn alloy showed the typical cast microstructure of columnar and equiaxed crystals. The primary dendrites and eutectic structure were clearly observed in the Al-Si alloy. There existed a macro-interface of Al-Mn/Al-Si alloys in the hybrid aluminum alloys. The macro-interface was well bonded, and the growth of primary dendrites in Al-Si alloy occurred from the macro-interface. The Al-Mn/Al-Si hybrid aluminum alloys with a well-bonded macro-interface showed excellent tensile strength and 0.2% proof stress, both of which are comparable to those values for binary Al-Mn alloy, indicating that the strength is preferentially dominated by the deformation of the Al-Mn alloy side. However, the degree of elongation was between that of binary Al-Mn and Al-Si alloys. The Al-Mn/Al-Si hybrid aluminum alloys were fractured on the Al-Mn alloy side. This was considered to have resulted from the limited deformation in the Al-Mn alloy side, which led to relatively low elongation compared to the binary Al-Mn alloy.
        4,000원
        164.
        2012.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Research into the development of high strength (1 GPa) and superior formability, such as total elongation (10%), and stretch-flangeability (50%) in hot-rolled steel was conducted with a thermomechanically controlled hot-rolling process. To improve the overall mechanical properties simultaneously, low-carbon steel using precipitation hardening of Ti-Nb-V multimicroalloying elements was employed. And, ideal microstructural characteristics for the realization of balanced mechanical properties were determined using SEM, EBSD, and TEM analyses. The developed steel, 0.06C-2.0Mn-0.5Cr-0.2(Ti + Nb + V), consisted of ferrite as the matrix phase and second phase of granular bainite with fine carbides (20-50 nm) in both phases. The significant factor of the microstructural characteristics that affect stretch-flangeability was found to be the microstructural homogeneity. The microstructural homogeneity, manifest in such characteristics as low localization of plastic strain and internally stored energy, was identified by grain average misorientation method, analyzed by electron backscattered diffraction (EBSD) and hardness deviation between the phases. In summar, a hot-rolled steel having a composition 0.06C-2.0Mn-0.5Cr-0.2(Ti + Nb + V) demonstrated a tensile strength of 998 MPa, a total elongation of 19%, and a hole expansion ratio of 65%. The most important factors to satisfy the mechanical property were the presence of fine carbides and the microstructural homogeneity, which provided low hardness deviation between the phases.
        4,000원
        165.
        2011.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        MAO(Micro-Arc Oxidation) method was used to make surface on 6063 Al specimen. This study was focused on an influence of voltage, density of electrolyte and a period of treatment on the change of surface microstructure by using SEM(Scanning Electron Microscope), EDS(Energy Dispersive X-ray Spectroscopy). The microstructure shows higher roughness and thicker oxidized layer with increase of voltage and maintaining period of treatment. The density of electrolyte affected a formation of more dense surface and increase of a oxidized layer.
        4,000원
        166.
        2011.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ag spot-coated Cu nanopowders were synthesized by a hydrothermal-attachment method (HA) using oleic acid capped Ag hydrosol. Cu nano powders were synthesized by pulsed wire exploding method using 0.4 mm in diameter of Cu wire (purity 99.9%). Synthesized Cu nano powders are seen with comparatively spherical shape having range in 50 nm to 150 nm in diameter. The oleic acid capped Ag hydrosol was synthesized by the precipitation-redispersion method. Oleic acid capped Ag nano particles showed the narrow size distribution and their particle size were less than 20 nm in diameter. In the case of nano Ag-spot coated Cu powders, nanosized Ag particles were adhered in the copper surface by HAA method. The components of C, O and Ag were distributed on the surface of copper powder.
        4,000원
        167.
        2011.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the effect of milling time on the microstructure and phase transformation behaviors of Ni-12 wt.%B powders was investigated using vibratory ball milling process. X-ray diffraction patterns showed that the phase transformation of mixed Ni-B elemental powder occurred after 50 hours of milling, with a formation of nickel boride phases. Through the study of microstructures in mechanical alloying process, it was considered that ball milling strongly accelerates solid-state diffusions of the Ni and B atoms during mechanical alloying process. The results of X-ray photoelectron spectroscopy showed that most of B atoms in the powder were linked to Ni with a formation of nickel boride phases after 200 hours of milling. It was finally concluded that mechanical alloying using ball milling process is feasible to synthesize fine and uniform nickel boride powders.
        4,000원
        168.
        2011.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Yttrium oxide is one of the most thermo-dynamically stable materials, so that it is generally used as a dispersoid in many kinds of dispersion strengthed alloys. In this study, a nickel-base superalloy is strengthened by dispersion of yttrium oxide particles. Elemental powders with the composition of Ni-22Cr-18Fe-9Mo were mechanically alloyed(M.A.) with 0.6 wt% . The MA powders were then HIP(hot isotactic press)ed and hot rolled. Most oxide particles in Ni-22Cr-18Fe-9Mo base ODS alloy were found to be Y-Ti-O type. The oxide particles were uniformly dispersed in the matrix and also on the grain boundaries. Tensile test results show that the yield strength and ultimate tensile strength of ODS alloy specimens were 1.2~1.7 times higher than those of the conventional X(R), which has the same chemical compositions with ODS alloy specimens except the oxide particles.
        4,000원
        169.
        2011.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The HDDR(hydrogenation-disproportionation-desorption-recombination) process can be used as an effective way of converting no coercivity Nd-Fe-B material, with a coarse grain structure to a highly coercive one with a fine grain. Careful control of the HDDR process can lead to an anisotropic without any post aligning process. In this study, the effect of hydrogen gas input at various temperature in range of of hydrogenation stage (named Modified-solid HDDR, MS-HDDR) on the magnetic properties has been investigated. The powder from the modified-solid HDDR process exhibits Br of 11.7 kG and iHc of 10.7 kOe, which are superior to those of the powder prepared using the normal HDDR process.
        4,000원
        170.
        2011.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we reported the microstructure and properties of Ag- contact materials fabricated by a controlled milling process with subsequent consolidation. The milled powders were consolidated to bulk samples using a magnetic pulsed compaction process. The nano-scale phases were distributed homogeneously in the Ag matrix after the consolidation. The relative density and hardness of the Ag- contact materials were 95~96% and 89~131 Hv, respectively.
        4,000원
        171.
        2011.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Saw wires have been widely used in industries to slice silicon (Si) ingots into thin wafers for semiconductor fabrication. This study investigated the microstructural and mechanical properties, such as abrasive wear and tensile properties, of a saw wire sample of 0.84 wt.% carbon steel with a 120 μM diameter. The samples were subjected to heat treatment at different linear velocities of the wire during the patenting process and two different wear tests were performed, 2-body abrasive wear (grinding) and 3-body abrasive wear (rolling wear) tests. With an increasing linear velocity of the wire, the tensile strength and microhardness of the samples increased, whereas the interlamellar spacing in a pearlite structure decreased. The wear properties from the grinding and rolling wear tests exhibited an opposite tendency. The weight loss resulting from grinding was mainly affected by the tensile strength and microhardness, while the diameter loss obtained from rolling wear was affected by elongation or ductility of the samples. This result demonstrates that the wear mechanism in the 3-body wear test is much different from that for the 2-body abrasive wear test. The ultra-high tensile strength of the saw wire produced by the drawing process was attributed to the pearlite microstructure with very small interlamellar spacing as well as the high density of dislocation.
        4,000원
        172.
        2011.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Flat rolling of wire is an industrial process used to manufacture electrical flat wire, medical catheters, springs, piston segments and automobile parts, among other products. In a multi-step wire flat rolling process, a wire with a circular crosssection is rolled at room temperature between two flat rolls in several passes to achieve the desired thickness to width ratio. To manufacture a flat wire with a homogeneous microstructure, mechanical and metallurgical properties with an appropriate pass schedule, this study investigated the effect of each pass schedule (1stand ~ 4stand) on the microstructures, mechanical properties and widths of cold rolled high carbon steel wires using four-pass flat rolling process. The evolutions of the microstructures and mechanical properties of the widths of cold rolled wires during three different pass schedules of the flat rolling process of high carbon wires were investigated, and the results were compared with those for a conventional eight-pass schedule. In the width of cold rolled wires, three different pass schedules are clearly distinguished and discussed. The experimental conditions were the same rolling speed, rolling force, roll size, tensile strength of the material and friction coefficient. The experimental results showed that the four-pass flat cold rolling process was feasible for production of designed wire without cracks when appropriate pass schedules were applied.
        4,000원
        173.
        2011.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The effect of heat treatment on the micro-structures and the mechanical properties of 0.002% boron added low carbon steel was investigated. The tensile strength reached the peak at about 880-890˚C with the rising quenching temperature and then the hardness decreased sharply, but the tensile strength hardly decreased. The tensile and yield strength decreased and the total elongation increased with a rising tempering temperature, but the tensile and yield strength sharply fell and the total elongation prominently increased from above a 400-450˚C tempering temperature. Tempered martensite embrittlement (TME) was observed at tempering condition of 350-400˚C. In the condition of quenching at 890˚C and tempering at 350˚C, the boron precipitates were observed as Fe-C-B and BN together. The hardness decreased in proportion to the tempering temperature untill 350˚C and dropped sharply above 400˚C regardless of the quenching temperature.
        4,000원
        174.
        2011.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The present study was carried out to evaluate the microstructural and mechanical properties of cross-roll rolled pure copper sheets, and the results were compared with those obtained for conventionally rolled sheets. For this work, pure copper (99.99 mass%) sheets with thickness of 5 mm were prepared as the starting material. The sheets were cold rolled to 90% thickness reduction and subsequently annealed at 400˚C for 30 min. Also, to analyze the grain boundary character distributions (GBCDs) on the materials, the electron back-scattered diffraction (EBSD) technique was introduced. The resulting cold-rolled and annealed sheets had considerably finer grains than the initial sheets with an average size of 100 μM. In particular, the average grain size became smaller by cross-roll rolling (6.5 μM) than by conventional rolling (9.8 μM). These grain refinements directly led to enhanced mechanical properties such as Vickers micro-hardness and tensile strength, and thus the values showed greater increases upon cross-roll rolling process than after conventional rolling. Furthermore, the texture development of<112>//ND in the cross-roll rolling processed material provided greater enhancement of mechanical properties relative to the case of the conventional rolling processed material. In the present study, we systematically discuss the enhancement of mechanical properties in terms of grain refinement and texture distribution developed by the different rolling processes.
        4,000원
        177.
        2011.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The aim of this study was to investigate microstructures and mechanical properties of nano-sized Ti-35 wt.%Nb-7 wt.%Zr-10 wt.%CPP composite fabricated by high energy mechanical milling (HEMM) and pulse current activated sintering (PCAS). Grain growth of the mechanically milled powder was prevented by performing PCAS. The principal advantages of calcium phosphate materials include: similarity in composition to the bone mineral, bioactivity, osteoconductivity and ability to form a uniquely strong interface with bone. The hardness and wear resistance property of nano-sized Ti-35 wt.%Nb-7 wt.%Zr-10 wt.%CPP composites increased with increasing milling time because of decreased grain-size of sintered composites.
        4,000원
        178.
        2011.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A high thermal conductive AlN composite coating is attractive in thermal management applications. In this study, AlN-YAG composite coatings were manufactured by atmospheric plasma spraying from two different powders: spray-dried and plasma-treated. The mixture of both AlN and YAG was first mechanically alloyed and then spray-dried to obtain an agglomerated powder. The spray-dried powder was primarily spherical in shape and composed of an agglomerate of primary particles. The decomposition of AlN was pronounced at elevated temperatures due to the porous nature of the spray-dried powder, and was completely eliminated in nitrogen environment. A highly spherical, dense AlN-YAG composite powder was synthesized by plasma alloying and spheroidization (PAS) in an inert gas environment. The AlN-YAG coatings consisted of irregular-shaped, crystalline AlN particles embedded in amorphous YAG phase, indicating solid deposition of AlN and liquid deposition of YAG. The PAS-processed powder produced a lower-porosity and higher-hardness AlN-YAG coating due to a greater degree of melting in the plasma jet, compared to that of the spray-dried powder. The amorphization of the YAG matrix was evidence of melting degree of feedstock powder in flight because a fully molten YAG droplet formed an amorphous phase during splat quenching.
        4,000원
        179.
        2011.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Effect of Cu content on microstructural and magnetic properties of a (wt.%), (x = 0.2, 0.3, 0.4, 0.5) strip-cast was studied. The average inter-lamellar spacing in the free surface and wheel side of the strip cast increased as the Cu content increases. The grain uniformity, the grain alignment, and (00L) texture of the strip cast increased with Cu contents up to 0.4 wt.%. These microstructural changes were attributed to the decrease of the effective cooling rate of the melted alloy caused by the decrease of the melting temperature of resulting from Cu addition. Coercivity and remanence were increased because of the grain alignment and (00L) texture improvement with Cu contents up to 0.4 wt.%.
        4,000원
        180.
        2011.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Energy resistance welding (ERW) is a pipe-producing process that has high productivity and low manufacturing cost. However, the high heat input of ERW degrades the mechanical property of the pipe. This study investigates the effect of heat input and alloying elements on microstructure and mechanical properties of ERW pipes. As the heat input increased, the ferrite amount increased. The ferrite amount in the weld centerline was larger than t at in the weld boundary. Medium carbon steels (S45C and K55) having 0.3~0.4wt.% carbon yielded a significant difference of ferrite amount in the weld centerline and weld boundary. High alloyed steels (DP780 and K55) having 1.5~1.6wt.% Mn showed a ferrite rich zone in the weld centerline. These phenomena are probably due to decarburization and demanganisation in the weld centerline. As the ferrite fraction increased, the hardness decreased a little for the S45C steels. In addition, DP780 steels and K55 steels showed that the hardness drops when those steels have a ferrite rich zone. But we demonstrated the good tensile property of the DP780 steels and K55 steels in which Mn is included.
        4,000원