검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 553

        161.
        2009.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, Ti powder was fabricated from Ti scrap by a hydrogenation-dehydrogenation (HDH)method. The Ti powders were compacted by Spark plasma sintering (SPS) and the microstructure andmechanical properties of the powders were investigated. A hydrogenation reaction of Ti scrap occurred attemperatures near 450oC with a sudden increase in the reaction temperature and a decrease in the pressureof the hydrogen gas as measured in a furnace during the hydrogenation process. In addition, a dehydrogenationprocess was carried out at 750oC for 2hrs in a vacuum of 10-4torr. The Ti powder sizes obtained byhydrogenation-dehydrogenation and mechanical milling processes were in the range of 1~90µm and 1~100µm,respectively. To fabricate Ti compacts, Ti powders were sintered under an applied uniaxial punch pressure of40 MPa at in a range of 900~1200oC for 5 min. The relative density of a SPSed compact was 99.6% at 1100oC,and the tensile strength decreased with an increase in the sintering temperature. However, the hardnessincreased as the sintering temperature increased.
        4,000원
        162.
        2008.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The sintering behavior of zircon with silica was investigated. Zircon with 5 vol% of sedimentation SiO2 resulted in the apparent density of 4.45 g/cm3, the diametral tensile strength of 12.125 kgf/cm2, and the micro Vickers hardness of 1283 HV. The dissociation temperature and mechanical characteristics of the ZrSiO4 were changed with different kinds of SiO2. SiO2 addition prevented dissociation of ZrSiO4. Zircon with 5 vol% of sedimentation SiO2 and with 5 vol% of fused SiO2 resulted in increased diametral tensile strength and increased micro Vickers hardness by suppression of ZrSiO4 dissociation and low temperature liquid SiO2 formation. Zircon with fumed SiO2 and quartz SiO2 resulted in decreased diametral tensile strength and decreased micro Vickers hardness because of cristobalite and quartz phase formation and high temperature liquid SiO2 formation. Zircon with 10 vol% of SiO2 resulted in decreased diametral tensile strength and decreased micro Vickers hardness because of weak particle coupling due to excess formation of liquid SiO2.
        4,000원
        163.
        2008.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        SOFC (Solid Oxide Fuel Cell) Ni-YSZ anode was fabricated by the spark plasma sintering (SPS) process and its microstructure and electrical properties were investigated in this study. The spark plasma sintering process was carried out at for holding time of 5 min under 40 MPa. To fabricate Ni-YSZ anode, the SPS processed specimens were reduced at under atmosphere. The reduced specimens showed relative density of according to sintering temperature. And also, the electrical conductivity of reduced specimens after sintering at 900 and showed (S/cm) values at the measuring range of .
        4,000원
        164.
        2008.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper deals with the phase analysis of bulk using spark plasma sintering process after ball milling. Mg and amorphous B powders were used as raw materials, and milled by planetary-mill for 9 hours at argon atmosphere. In order to confirm formation of phase, DTA and XRD were used. The milled powders were fabricated to bulk at the various temperatures by Spark Plasma Sintering. The fabricated bulk was evaluated with XRD, EDS, FE-SEM and PPMS. In the DTA result, reaction on formation of phase started at . This means that ball milling process improves reactivity on formation of phase. The MgO and FeB phases were characterized from XRD result. MgO and FeB were undesirable phases which affect formation of phase, and it's distribution could be confirmed from EDS mapping result. Spark Plasma Sintered sample for 5 min at was relatively densified and it's density and transition temperature showing super conducting property were and 21K.
        4,000원
        165.
        2008.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        doped (GDC) solid solutions have been considered as a promising materials for electrolytes in intermediate-temperature solid oxide fuel cells. In this study, the nano-sized GDC powder with average panicle size of 69nm was prepared by a high energy ball milling process and its sintering behavior was investigated. Heat-treatment at of nano-sized GDC powder mixture led to GDC solid-solution. The enhanced densification over 96% of relative density was obtained after sintering at for 2h. It was found that the sinterability of GDC powder could be significantly improved by the introduction of a high energy ball milling process
        4,000원
        166.
        2008.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fe based () amorphous powder were produced by a gas atomization process, and then ductile Cu powder fabricated by the electric explosion of wire(EEW) were mixed in the liquid (methanol) consecutively. The Fe-based amorphous - nanometallic Cu composite powders were compacted by a spark plasma sintering (SPS) processes. The nano-sized Cu powders of 200 produced by EEW in the methanol were mixed and well coated with the atomized Fe amorphous powders through the simple drying process on the hot plate. The relative density of the compacts obtained by the SPS showed over 98% and its hardness was also found to reach over 1100 Hv.
        4,000원
        167.
        2008.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Sintering behavior of iron nanopowder agglomerate compact prepared by slurry compaction method was investigated. The Fe nanopowder agglomerates were prepared by hydrogen reduction of spray dried agglomerates of ball-milled nanopowder at various reduction temperatures of , and , respectively. It was found that the Fe nanopowder agglomerates produced at higher reduction temperature have a higher green density compact which consists of more densified nanopowder agglomerates with coarsed nanopowders. The sintering behavior of the Fe nanopowder agglomerates strongly depended on the powder packing density in the compact and microstructure of the agglomerated nanopowder. It was discussed in terms of two sintering factors affecting the entire densification process of the compact.
        4,000원
        168.
        2008.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Microstructure and mechanical properties of WC-3wt% Co cemented carbides, fabricated by a sparkplasma sintering (SPS) process, were investigated in this study. The WC-3wt%Co powders were sintered at900~1100oC for 5min under 40MPa in high vacuum. The density and hardness were increased as the sinteringtemperature increased. WC-3wt%Co compacts with a relative density of 97.1% were successfully fabricated at1100oC. The fracture toughness and hardness of a compact sintered at 1100oC were 21.6MPa·m1/2 and4279Hv, respectively.
        4,000원
        169.
        2008.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Effect The effect of sintering additives (SiO2, Al2O3, Clay) on the mechanical characteristics of sintered zircon was investigated. 1 vol% of additives in zircon powder was was sintered at 120~1500˚C, the mechanical characteristics were measured, and microstructure analysis were was conducted. Al2O3 and clay additions increase the formation of monoclinic and tetragonal-ZrO2 formation. An addition of SiO2 addition suppressed the formation of tetragonal-ZrO2 formation., The A specimen sintered at 1400˚C showed the a density of 4.05 g/cm3 and the a microhardness of 1120 HV, respectively.
        4,000원
        170.
        2008.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The densification behavior of Al-20Si-5.5Fe-1.2Mg-0.5Mn powders was investigated through micro-structure analysis of sintered specimens. The specimens sintered in vacuum or in high purity (99.999%) nitrogen showed porous near-surface microstructures. The densification of near-surface part was enhanced by means of ultra-high purity (99.9999%) nitrogen atmosphere. The relationship between slow densification and oxide surfaces of Al alloy powders was discussed. And the effects of Mg addition, nitrogen gas, and humidity on densification were discussed. In addition, the rapid growth of primary Si crystals above the critical temperature was reported.
        4,000원
        171.
        2008.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The effect of sintering aids and glass-frit on the densification and resistivity of silver paste was investigated in an effort to enhance the sintered density and electrical conductivity of the silver electrode. To prepare Pb-free silver paste for use at low sintering temperatures, two commercial silver powders (0.8 μm and 1.6 μm in size) and 5wt.% lab-synthesized nanoparticles (30-50 nm in size) as a sintering aids were mixed with 3 wt.% or 6 wt.% of glass frit (Bi2O3-based) using a solvent and three roll mills. Thick films from the silver paste were prepared by means of screen printing on an alumina substrate followed by sintering at 450˚C to 550˚C for 15 min. Silver thick films from the paste with bimodal particles showed a high packing density, high densification during sintering and low resistivity compared to films created using monomodal particles. Silver nanoparticles as a sintering aid enhanced the densification of commercial silver powder at a low sintering temperature and induced low resistivity in the silver thick film. The glass frit also enhanced the densification of the films through liquid phase sintering; however, the optimum content of glass frit is necessary to ensure that a dense microstructure and low resistivity are obtained, as excessive glass-frit can provoke low conductivity due to the interconnection of the glass phase with the high resistivity between the silver particles.
        4,000원
        172.
        2007.12 구독 인증기관 무료, 개인회원 유료
        Cu-coated CaS:Eu2+을 1000℃에서 1500℃까지 소성하여 합성하였으며, 이를 스크린 인쇄 방법(screen printing method)을 이용하여 전면 전극층(ITO PET film), 형광층(Cu-coated CaS:Eu2+), 절연층(BaTiO3), 배면 전극층(silver)순으로 적층하였다. 1000℃에서 1500℃까지 소성 온도가 올라감에 따라서 형광체의 grain 크기가 증가 하는 것을 SEM 사진을 통하여 확인하였다. 또한 광 발광(Photoluminescence) 측정에서는 1000℃에서 가장 밝은 발광을 보였으며, 온도가 증가함에 따라 점진적으로 감소하는 경향성을 보였으나, 전계 발광 (Electroluminescence)의 경우에는 1400℃에서 가장 좋은 발광 상태를 보였다. 광 발광과 전계 발광의 경향성 차이는 전계 발광 소자에서의 grain 크기 효과 때문이다. grain 크기가 작아지면 sheet 저항이 낮아지며, 이에 따라 가속되는 전자의 에너지가 증가하여 발광 효율을 높여준 것으로 판단된다.
        4,000원
        173.
        2007.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The Cu-based bulk metallic glass (BMG) composites containing Zr-based metallic glass phase have been consolidated by spark plasma sintering using the mixture of Cu-based and Zr-based metallic glass powders in their overlapped supercooled liquid region. The Zr-based metallic glass phases are well distributed homogeneously in the Cu-based metallic glass matrix after consolidation process. The successful consolidation of BMG composites with dual amorphous phases was corresponding to the sound viscous flow of the two kinds of metallic glass powders in their overlapped supercooled liquid region.
        4,000원
        174.
        2007.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The sintering behavior and mechanical property of Mo nanopowder was investigated as a function of various sintering condition. Mo oxide nanopowders were milled using a high energy ball-milling process. After the ball milling for 20h, the crystalline size of was about 20 nm. The nanopowders were reduced at the temperature of without holding time in atmosphere. The sinterability of Mo nanopowder and commercial Mo powder was investigated by dilatometric analysis. Mo nanopowder and commercial Mo powder were sintered at for 1 hand for 3 h, respectively. In both specimens the measured relative density was about 95%. But the measured hardness values were 2.34 GPa for nanopowder and 1.87 GPa for commercial powder. Probably due to finer grain size of the sintered body prepared from Mo nanopowder than that prepared using commercial Mo powder. The mean grain sizes were measured to be about 1.4 mm and 6.2 mm, respectively.
        4,000원
        175.
        2007.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Characteristics of Al-based composites with waste stainless steel short fiber, fabricated by magnetic pulsed compaction and sintering were investigated. The compacts prepared by magnetic pulsed compaction showed high relative density and homogeneous microstructure compared with that by conventional press compaction. The relative density of sintered composites at for 1 h exhibited the same value with compacts and decreased with increase in STS short fiber content. The reaction between Al and STS phase was confirmed by the microstructural analysis using EDS. The sintered composites, prepared by magnetic pulsed compaction, showed increased hardness value with increasing STS fiber content. Maximum yield strength of 100 MPa and tensile strength of 232 MPa were registered in the AI-based composite with 30 vol% STS short fiber.
        4,000원
        177.
        2007.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Pure WC or WC with low Co concentration less than 0.5 wt.% is studied to fabricate high density WC/Co cemented carbide using vacuum sintering and post HIP process. Considering the high melting point of WC, it is difficult to consolidate it without the use of Co as binder. In this study, the effect of lower Co addition on the microstructure and mechanical properties evolution of WC/CO was investigated. By HIP process after vacuum sintering, hardness and density was sharply increased. The hardness values was using binderless WC.
        4,000원
        178.
        2007.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The present study was focused on the synthesis of a dispersed copper matrix composite material by the combination of the mechanical milling and plasma activated sintering processes. The mixed powder was prepared by the combination of the mechanical milling and reduction processes using the copper oxide and titanium diboride powder as the raw material. The synthesized mixed powder was sintered by the plasma activated sintering process. The hardness and electric conductivity of the sintered bodies were measured using micro vickers hardness and four probe method, respectively. The relative density of composite material sintered at showed about 98% of theoretical density. The composite material has a hardness of about 130Hv and an electric conductivity of about 85% IACS. The hardness and electric conductivity of composite material were about 140 Hv and about 45% IACS, respectively.
        4,000원