벨로우즈 신축이음관은 구조적 특성으로 인해 큰 변위 용량을 갖으며 과도한 상대변위에 의한 매립 배관 시스템의 손상을 저감시키기 위해 연결부로써 사용된다. 벨로우즈 신축이음관의 내진성능 평가를 위한 연구에서 한계상태는 변형률을 적용하였지만 변형률 기반 한계상태는 벨로우즈 신축이음관의 큰 변위용량을 고려할 수 없다. 또한 벨로우즈 신축이음관의 성능평가와 한계상태 분석을 위한 해석적 및 실험적 연구는 수행된 사례가 극히 적다. 따라서 본 연구는 단조 및 반복하중을 받는 벨로우즈 신축이 음관의 해석적 연구를 통해 벨로우즈 신축이음관의 한계상태를 분석하였다. 결과적으로 단조하중 보다 반복하중을 받는 벨로우즈 신축이음관은 더 낮은 변위에서 누출이 발생하였다. 반복하중으로 인한 피 로 및 라체팅 현상으로 인해 단조하중 보다 낮은 변위의 성능을 갖는 것으로 보여진다. 따라서 반복하 중에서 관측된 변위응답을 기반으로 벨로우즈 신축이음관의 내진성능 평가를 수행하는 것이 보수적일 것으로 판단된다.
High-Manganese (Mn) austenitic steel, with over 24 wt% Mn content, offers outstanding mechanical properties in cryogenic settings, making it a potential replacement for existing cryogenic materials. This high manganese steel exhibits high strength, ductility, and wear resistance, making it promising for applications like LNG tanks, flanges, and valves. To operate in cryogenic environments, hot forging and heat treatment processes are vital, especially in flange production. The cooling rate during high-temperature cooling after hot forging plays a critical role in influencing the microstructure and mechanical properties of high manganese steel. The rate at which cooling occurs during this process influences the size of the grains and the distribution of manganese and consequently has an impact on mechanical properties. This study assessed the microstructure and mechanical properties based on different cooling rates during the hot forging of High-Mn steel flanges. Comparing air and water cooling after hot forging, followed by heat treatment, revealed notable differences in grain size. These differences directly impacted mechanical properties such as tensile strength, hardness, and Charpy impact property. Understanding these effects is crucial for optimizing the performance and reliability of High-Mn steel in cryogenic applications.
Bellows expansion joints enhance the displacement performance of piping systems owing to their unique geometrical features. However, structural uncertainties such as wall thinning in convolutions, a byproduct of the manufacturing process, can impair their structural integrity. This study addresses such issues by conducting a global sensitivity analysis to assess the impact of these uncertainties on the performance of bellows expansion joints under monotonic loading. Global sensitivity analysis, which examines main and nth order interaction effects, is computationally expensive. To mitigate this, we employed a surrogate model-based approach using an artificial neural network. This model demonstrated robust prediction capabilities, as evidenced by metrics such as the coefficient of determination. The sensitivity indices of the main effect for the 2-ply and 3-ply bellows at the sixth convolution were 0.3340 and 0.3233, respectively. The sensitivity index of the sixth convolution was larger than that of other convolutions because the maximum deformation of the bellows expansion joint under monotonic bending load occurs around it. Interestingly, the sensitivity index for the interaction effect was negligible (0.01%) compared to the main effect, suggesting minimal activity between uncertainty factors across convolutions. Notably, bellows expansion joints under repetitive loading exhibit more complex behaviors, with the initial leakage typically occurring at the convolution. Therefore, future studies should focus on the structural uncertainties of bellows expansion joints under cyclic loading and employ a surrogate model for comprehensive global sensitivity analysis.
In piping systems, trapeze hangers are subjected to vertical and horizontal seismic loads and stiffeners are used. In this study, monotonic compression tests were conducted with the removable stiffeners using three variables: stiffener clamp fixing position, section length, and installation direction. The maximum load reinforced with stiffeners could withstand a compressive load of 11kN by applying a safety factor of 10%. It could be estimated that the fixing clamp spacing or the length of shape and load had a proportional relationship. And the stiffener must be fixed in the direction of the strong axis on hinge parts. Also the stiffener buckiling load design proposes to use a method of calculate the flexural buckling compressive strength of and unreinforced full threaded bolt.
In this paper, durability verification of forged wheels for automobiles were performed using the finite element method for bending fatigue analysis and impact analysis. In addition, the durability analysis environment of forged wheels was implemented. By analyzing the stress distribution on the surface of the forged wheel, the area with a high possibility of breakage was identified and improved. The durability analysis of the initial model forged wheel was performed by bending fatigue analysis and impact analysis, The stress distribution of the forged wheel surface was analyzed through the analysis results of the initial model. and the spokes, flanges, hubs, and rear parts are less likely to be damaged were cut to reduce the weight by about 10%, and the reliability of the improved model was confirmed.
배관 시스템은 기체 및 액체 등의 에너지원을 수송하기 위해 사용되며 주로 건물 내부에 설치되거나 지반에 매립되 어 설치된다. 매립된 배관 시스템은 지진이나 지반침하와 같은 큰 상대변위를 받을 수 있으며 이는 배관의 연결부에 손상을 야 기할 수 있다. 벨로우즈는 기하학적 특성으로 축방향 및 회전 변형을 일부 허용한다. 그러므로 벨로우즈 신축관이음을 적용하면 큰 상대변위에 의한 손상을 줄일 수 있는 것으로 예상된다. 하지만 벨로우즈의 성형과정에서 회선의 벽 두께 감소가 발생할 수 있으며 이는 휨 및 인장 성능에 영향을 미칠 수 있다. 본 연구는 단조하중을 받는 벨로우즈 신축관이음의 성능을 분석하기 위 한 실험적 연구를 수행하였다. 또한 단조하중 실험 결과를 바탕으로 벨로우즈 신축관이음의 유한요소모델을 구축하였으며 실험 결과와 비교하여 검증하였다. 검증된 유한요소 모델을 이용하여 회선의 두께 감소에 의한 성능 변화를 분석하였다. 벽 두께 감 소율은 5%, 10%, 15%, 20%, 25%로 가정하였다. 해석 결과 인장 및 휨 하중에 따른 하중-변위 관계의 전체적인 강성과 최대 하 중이 감소하는 것으로 나타났다. 벽 두께 감소율이 25%일 때 인장 및 휨 하중에 따른 최대 하중은 각각 14%, 26% 감소하는 것 으로 나타났다.
Ball stud parts are manufactured by a cold forging process, and fastening with other parts is secured through a head part cutting process. In order to improve process quality, stabilization of the forging quality of the head is given priority. To this end, in this study, a predictive model was developed for the purpose of improving forging quality. The prediction accuracy of the model based on 450 data sets acquired from the manufacturing site was low. As a result of gradually multiplying the data set based on FE simulation, it was expected that it would be possible to develop a predictive model with an accuracy of about 95%. It is essential to build automated labeling of forging load and dimensional data at manufacturing sites, and to apply a refinement algorithm for filtering data sets. Finally, in order to optimize the ball stud manufacturing process, it is necessary to develop a quality prediction model linked to the forging and cutting processes.
Most of automobile steering parts are manufactured through the multi-stage cold forging process using round-bar drawn materials. The same process is applied to the ball stud parts of the outer ball joint, and various research activities are being carried out to reduce the extreme manufacturing cost in order to survive in the limitless competition. In this paper, we present a quantitative prediction method for the limiting life of the die as a method for cost reduction in the multi-stage cold forging process. The load on the die was minimized by distributing the forming load based on process optimization through finite element analysis. In addition, based on the quantitative prediction algorithm of the limiting life of the die, the application of the split die and the optimization of the phosphate treatment of the material surface are presented as a conclusion as a method to improve the limiting life of the die.
In this study, as part of the paradigm shift for manufacturing innovation, data from the multi-stage cold forging process was collected and based on this, a big data analysis technique was introduced to examine the possibility of quality prediction. In order for the analysis algorithm to be applied, the data collection infrastructure corresponding to the independent variable affecting the quality was built first. Similarly, an infrastructure for collecting data corresponding to the dependent variable was also built. In addition, a data set was created in the form of an independent variable-dependent variable, and the prediction accuracy of the quality prediction model according to the traditional statistical analysis and the tree-based regression model corresponding to the big data analysis technique was compared and analyzed. Lastly, the necessity of changing the manufacturing environment for the use of big data analysis in the manufacturing process was added.
The damage to non-structural elements in buildings has been increasing due to earthquakes. In Korea, post-installed anchors produced overseas have been mainly used for seismic anchorage of non-structural components to structures. Recently, a new cast-in-place concrete insert anchor installed in concrete without drilling has been developed in Korea. In this paper, an experimental study was conducted to evaluate the tensile and shear strengths of the newly developed anchor under monotonic load. The failure modes of the tension specimens were divided into concrete breakout failure and steel failure, and all shear specimens showed steel failure. In both tension and shear, the maximum loads of specimens were greater than the nominal strengths predicted by the concrete design code (KDS 14 20 54). As a result, it is expected that the current code can also be used to calculate the strength of the developed cast-in anchor.
Metal bodies have generally been produced through machining process, even the smallest parts that are assembled and mounted on the metal body. In this study, we will study the process of manufacturing parts called SIM Tray through compound forging process instead of cutting. The process of replacing a series of SIM Tray production process with a composite forging process by simulating the forming process using DEFORM-3D and making process design, mold design, mold fabricating.
The global trend is the application of heat-treated omission materials to reduce the manufacturing cost of automobile steering parts. Attempts have been made to apply heat-treated omission materials in domestic, but they are delayed due to concerns over rising cold forging process costs. For quantitative prediction of cold forging process cost, fatigue properties of forging die materials were evaluated. Based on this, the die life and cost were predicted quantitatively, and the manufacturing cost reduction of automobile steering parts using heat-treated material was found to be about 11%. Also, various methods to improve die life were additionally presented.
This study has related to lightweight automobiles due to global warming with the reduction of fossil fuel reserves are rapidly progressing around the automobile industry.
This study has revealed the relationship for the mechanical properties via the analyzed microstructure, precipitated phase variation of the wheel hub of a commercial vehicle manufactured using molten forging technology using A356 and A357 alloys, which are high-strength Al-Si-Mg base cast aluminum alloys. Differential scanning calorimetry has performed to analyze the precipitation amount of each alloy that influences the mechanical properties of aluminum alloy. The XRD analysis has measured for the microstructure's crystal phase on A356 and A357 alloys.
In this paper has evaluated to compare the properties of the A356 alloy and the A357 alloy for the mechanical properties. The A356 alloy has confirmed that a microstructure is finer than A357 alloy, and a quantity of precipitated material is more than A357 alloy. Therefore, this study confirmed that the A356 alloy has better mechanical properties than the A357 alloy.
Forged part made of Cold heading quality wire materials are used for automotive brake systems. The cost reduction of forged products is a major issue because of the strict shape change. A series of studies were conducted to minimize the cost of EPB spindle process among brake parts. In order to reduce the material cost, heat treatment-abbreviated material was applied and the formability on the processes was verified by the ductile fracture theory. In addition, the causes of shape fixation and die life degradation were analyzed using the numerical simulation. The process cost has been minimized by re-designing process, changing the product shape, and the die material.
유니버설 조인트는 두 회전 축 사이에서 힘을 전달하는 구성 요소이며, 구동축과 피동축이 나란히 정렬되지 않아도 나란히 정 렬되지 않아도 동력전달이 가능하게 하며 각도 변화가 있는 전동축에서도 효율적으로 동력을 전달시키는 부품으로서 자동차의 동력전달 장치에서 많이 적용되고 있다. 차량의 경량화를 위해 고강도 알루미늄의 사용이 증가하고 있다. 본 연구에서는 알루미늄 6061 재질을 사용하여 유니버셜 조인트 샤프트를 성형하기 위해 환봉 압출, U-Shape 성형, Spline 성형 등에 대한 단조 해석 연구하였다. Bar Extrusion 성형 시 23.3Ton, U-shape 성형 시 62.2Ton, Spline 성형 시 3.2Ton, 총 Cycle Time 226sec의 성형 조건을 산출하였으며, 이를 적용하여 알루미늄 유니버셜 조인트를 제작하였다. 비틀림 시험을 통해 토크값은 평균 425.8(N・m), 비틀림 각은 평균 171.6° 의 실험값을 통해 기존 제품에 비해 단조 제품이 12.0∼14.4%의 비틀림 성능의 향상을 보였다.
Hot forging is widely used to manufacture many industrial parts such as machine, automotive and so on. It is important to simulate the relations or characteristics between preform and die before designing the die. The purpose of this study is to investigate the forging characteristics of parking gear with nonlinear gear groove, thus the behaviors of preform can be predicted in advance and finally they can be applied to die design. As the results, since the distributions of high effective strain rate of parking gear were less than 3%, it was predicted that the manufacturing of parking gear with nonlinear gear groove might be possible. Furthermore it was observed that, in this study, the effective stress of bottom die was lower than that of top die.
This study elucidates the effect of wear resistance in Forging S45C. Three wear factor which are wear loss, coefficient of friction and friction force could conduct an experiment of wear-resistance test. First of all, wear test of ball-on-disk has been performed using steel balls to determine the variation of wear characteristics. Finally, the coefficient of wear was calculated by the Archard wear equation in hot forging S45C.
The objective of this study was to investigate the optimal design on the tubular shaft and solid shaft for A-IMS of commercial vehicle. The tubular shaft and the solid shaft were designed by 6 stage processes and the results were analyzed by using a finite element analysis method. The coefficient of friction was set to Oil_Cold conditions as referred to the analysis library. It was found that the actual underfill phenomenon was not observed on the tubular shaft and solid shaft. The metal flow of the tubular shaft and solid shaft revealed that the folding phenomenon was not occurred, so there is no problem in actual production. Principal stress and load characteristics of tubular shaft were higher than those of solid shaft since the tubular shaft has many deformation from stage 1 to stage 3.