This study investigates the risk reduction effect and identifies the optimal capacity of Multi-barrier Accident Coping Strategy (MACST) facilities for nuclear power plants (NPPs) under seismic hazard. The efficacy of MACST facilities in OPR1000 and APR1400 NPP systems is evaluated by utilizing the Improved Direct Quantification of Fault Tree with Monte Carlo Simulation (I-DQFM) method. The analysis encompasses a parametric study of the seismic capacity of two MACST facilities: the 1.0 MW large-capacity mobile generator and the mobile low-pressure pump. The results demonstrate that the optimal seismic capacity of MACST facilities for both NPP systems is 1.5g, which markedly reduces the probability of core damage. In particular, the core damage risk is reduced by approximately 23% for the OPR1000 system, with the core damage fragility reduced by approximately 72% at 1.0g seismic intensity. For the APR1400 system, the implementation of MACST is observed to reduce the core damage risk by approximately 17% and the core damage fragility by approximately 44% under the same conditions. These results emphasize the significance of integrating MACST facilities to enhance the resilience and safety of NPPs against seismic hazard scenarios, highlighting the necessity for continuous adaptation of safety strategies to address evolving natural threats.
As the complexity and uncertainty of international construction projects increase, the importance of risk management capabilities in the construction industry has become more pronounced. Accordingly, Enterprise Risk Management (ERM) has become a widely adopted approach among organizations as a new way for more effective risk management. Despite its growing application, research related to ERM is still in its infancy, and most of the existing studies have been limited to financial industries. Therefore, this study aims to empirically examine the influence of ERM’s core elements on project risk management (PRM) and project performance within construction firms. Our findings indicate that the key ERM components—organization, policy, and culture—significantly enhance PRM processes, underscoring their critical role and importance. Additionally, effective PRM positively affects project outcomes, highlighting its significance for construction companies engaged in international projects. While ERM does not directly impact project performance, it indirectly improves outcomes through enhanced PRM capabilities. It suggests that ERM will contribute to the firm’s performance by improving the firm’s PRM capability through policies and a risk-focused culture corresponding to the adopted ERM organization and system..
Under increased complexity and uncertainty of overseas construction projects, it is important for construction companies to improve their own project risk management capabilities instead of risk-taking strategies to secure competitiveness in the overseas construction market. Although most of the risks occur in project execution stage, many previous studies focused on planning stage including risk identification and analysis among PRM process. Therefore, this study aims to verify the effectiveness of whole PRM process during project execution stage through empirical study on participants of overseas construction projects. As the result it was found that first, the factor directly affects the project success is the execution process of PRM. It implies that appropriate actions such as appointing charged manager for risks, timely implementation of responding plan, continuous risk monitoring and updating established plan are the key for contribution to the project success. Second, the importance of communication in PRM is also found, which is not conducted at a specific but throughout the entire PRM process and need to be managed as essential factor for successful PRM..
The government has recently introduced the human rights management system of public institutions in accordance with the OECD guidelines for multinational corporations and the UN guidelines for business and human rights implementation. For this reason, public institutions receive a human rights impact assessment to be reflected in the institutional management evaluation based on the human rights management manual of public institutions issued by the National Human Rights Commission of Korea. Human rights impact assessment is an institution’s management activities that identify and evaluate actual and potential human rights risks in advance and is divided into institutional and business operations. The institutional operation evaluation is conducted in 10 areas, including human rights management system, employment, labor rights, industrial safety, supply chain, and local residents’ protection, and the project operation evaluation is conducted by itself or by a specialized institution by selecting main projects and fields that can affect human rights of stakeholders. This study compares and analyzes the results of the human rights impact assessment of public institutions and specialized institutions and derives how much they contribute to improving human rights risk and respect for human rights, and what will be improved in the future. Therefore, the results of this study are expected to be of great help in the introduction and internalization of the human rights management system of public institutions.
In addition to simply providing quality food to the people, the fishery industry must be maintained and developed because it has various functions such as national food security, preservation of natural scenery, protection of national territory, and revitalization of the local economy. However, risk factors such as climate changes and environmental destruction have raised concerns about the sustainable development of the industry. Since these risk factors are becoming larger and more complex over time, it is time to conduct research related to the risk of the fishery industry. Therefore, the purpose of this study is to explore the risk factors facing the fisheries at this point, to analyze the economic ripple effect of regional fishery product supply shortage, and to draw implications. As a result of this study, the economic ripple effect of fishery product shortage per won was highest in Busan, followed by Gangwon, Gyeongnam, and Gyeongbuk. Considering the size of the local fishery industry, Busan had the highest supply shortage per 1% of local fisheries production. It is also necessary to prepare special risk management and countermeasures for these regions since the effect of supply shortage in regions such as Jeonnam, Gyeongnam, and Jeju is large compared to other regions.
Military aircraft R&D projects require large-scale investment in cost and time, and involve a complex coordination process in decision-making. The R&D project manager should determine the development management priorities as accurately as possible and focus on R&D capabilities, thereby reducing the risks of the aircraft R&D project. To this end, this study aims to reduce R&D risk by prioritizing cost, schedule, and performance, which are basic management factors used in R&D project management in defense project management regulations. Analytic Hierarchy Process (AHP) is applied using a questionnaire for managers in charge of aviation R&D under the Defense Acquisition Program Administration. As a primary result, the importance of the factors that the aircraft R&D project manager should consider was derived in the order of performance, cost, and schedule, and the priorities of performance and cost in the lower layer were also identified. In addition, in order to provide practical risk management measures to aircraft R&D project managers, the results of analyzing 28 cases of US National Transportation Safety Board accidents were compared and analyzed with the AHP analysis results, and management measures suitable for the situation were specified.
원자력시설 SPRA 방법으로서 기기 사이 부분 종속 관계를 정확하게 고려하기 위하여 샘플링기반접근법이 개발된 바 있다. 그러나 이는 샘플링 기반 방법이므로 정확한 지진 리스크 산정을 위하여 많은 수의 샘플을 추출해야 하는 단점이 있다. 이에 따라 본 연구에서 는 기존 방법을 개선하기 위한 효과적인 방법을 제안한다. 본 연구에서 제안한 방법의 주요한 특징은 다음과 같다. 기존 샘플링방법인 몬테카를로샘플링(MCS) 방법을 대신하여 다차원에서 효과적인 샘플링이 가능한 라틴하이퍼큐브샘플링(LHS) 방법을 샘플링기반 SPRA에 도입한다. 또한, 기존 지진세기 세분화 정도를 최종 지진 리스크 결과와 연계하여 결정한다. 제안된 방법이 결합된 샘플링기반 SPRA 접근법을 실제 원전 예제에 적용한 결과, 제안된 방법이 기존의 방법과 비교하여 결과 정확도에 있어서 거의 비슷하나 총 샘플 추출수 기준에서 효율성을 약 2배 가량 높이 것을 확인하였다. 또한, 샘플링 개수가 적은 영역에서 LHS 기반 방법이 MCS 기반 방법보다는 해의 정확도를 높이는 것을 확인할 수 있었다.
In general, companies operate systematically in response to financial risks such as exchange rates and liquidity, while they are vulnerable to risks in the manufacturing and sales processes. In particular, logistics refers to the activities for planning, managing and implementing efficient flows from the starting point of goods and products to the point of consumption, The purpose of this study was to develop key risks and key risk management indicators (KRIs) for risks that undermine logistics efficiency so that logistics risks can be effectively prevented and managed. As a result, 40 risk management indicators (KRIs) were developed in a total of six categories in the logistics sector, and the definition, calculation method and early warning grade of each KRI were presented so that companies could prevent risks in advance in logistics activities and contribute to enhancing efficiency of their work.
In this study, we develop a sampling-based seismic probabilistic risk assessment (SPRA) quantification technique that can accurately consider a partially dependent condition of component seismic fragility information. Specifically, the SPRA quantification method is proposed by combining the advantages of two representative methodologies: EPRI seismic fragility and JAERI seismic fragility input-based quantification. The most important feature of the proposed method is that it performs a SPRA using a sampling technique by transforming the EPRI seismic fragility input into JAERI seismic fragility input. When the proposed sampling-based approach was applied to an example of simple system and to a SPRA problem of a nuclear power plant, it was observed that the proposed method yields approximately similar system seismic fragility and seismic risk results as those of the exact solution. Therefore, it is believed that the approach proposed in this study can be used as a useful tool for accurately assessing seismic risks, considering the partial seismic dependence among the components; the existing SPRA method cannot handle such partial dependencies.
One of the most effective methods to consistently ensure the safety of a tap water supply can be achieved by application of a comprehensive risk assessment and risk management approach for drinking water supply systems. This approach can be termed water safety plans(WSP) which recommended by WHO(world health organization) and IWA(international water association). For the introduction of WSP into Korea, 150 hazards were identified all steps in drinking water supply from catchment to consumer and risk assessment tool based on frequency and consequence of hazards were developed. Then, developed risk assessment tool by this research was implemented at a water treatment plant(Q=25,000 m3/d) to verify its applicability, and several amendments were recommended; classification of water source should be changed from groundwater to stream to strengthen water quality monitoring contaminants and frequencies; installation of aquarium to monitor intrusion of toxic substances into raw water; relocation or new installation on-line water quality analyzers for efficient water quality monitoring; change of chlorination chemical from solid phase(Ca(OCl)2) to liquid phase(NaOCl) to improve soundness of chlorination. It was also meaningful to propose hazards and risk assessment tool appropriate for Korea drinking water supply systems through this research which has been inconsistent among water treatment authorities. Key words: Hazard, Reliability, Risk management, Water safety plan, Tap water
본 연구는 수중활동에서 나타나는 인체의 생리적 변화와 알코올 섭취로 인한 생리적 변화를 살펴보고 알코올 섭취가 스쿠버다이버에게 미치는 영향을 규명하는데 그 목적이 있다. 미국 내부통제연구소위원회의 내부통제 프레임워크를 기초로 본 연구에 적합하도록 새롭게 정립한 ‘리스크 평가 및 분석(RAA, risk assessment and analysis)’ 기법을 활용하여 알코올 섭취 전과 후의 리스크 분석을 실시하였다. RAA기법은 리스크 간 상관관계를 분석하는 1단계, 리스크를 정량화하고 리스크 데이터베이스를 구축하는 2단계, 그리고 이를 도식화하여 리스크맵을 분석하는 3단계로 이루어져 있다. RAA기법을 통해 알코올 섭취로 인한 수중활동의 리스크수준이 전반적으로 증가하여 고위험군의 비율이 높아진 것을 확인하였고 리스크수준의 정량화와 고위험군 분류를 통해 리스크관리 측면에서 우선통제대상을 지정할 수 있었다. 본 연구 결과는 알코올 섭취 후 행해지는 스쿠버다이빙의 위험성을 명확하게 알리고 이에 대한 스쿠버다이버들의 의식 개선을 도모하여 보다 안전한 스쿠버다이빙 환경을 제시할 수 있을 것으로 기대한다.
The seismic safety of nuclear power plants has always been emphasized by the effects of accidents. In general, the seismic safety evaluation of nuclear power plants carries out a seismic probabilistic safety assessment. The current probabilistic safety assessment assumes that damage to the structure, system, and components (SSCs) occurs independently to each other or perfect dependently to each other. In case of earthquake events, the failure event occurs with the correlation due to the correlation between the seismic response of the SSCs and the seismic performance of the SSCs. In this study, the EEMS (External Event Mensuration System) code is developed which can perform the seismic probabilistic safety assessment considering correlation. The developed code is verified by comparing with the multiplier n, which is for calculating the joint probability of failure, which is proposed by Mankamo. It is analyzed the changes in seismic fragility curves and seismic risks with correlation. As a result, it was confirmed that the seismic fragility curves and seismic risk change according to the failure correlation coefficient. This means that it is important to select an appropriate failure correlation coefficient in order to perform a seismic probabilistic safety assessment. And also, it was confirmed that carrying out the seismic probabilistic safety assessment in consideration of the seismic correlation provides more realistic results, rather than providing conservative or non-conservative results comparing with that damage to the SSCs occurs independently.