검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 90

        1.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study focused on improving the solubility of silodosin, a drug poorly soluble in water, by utilizing solid dispersions. Three types of dispersions were examined and compared against the drug powder: surface-attached (SA), solvent-wetted (SW), and solvent-evaporated (SE). Polyvinyl alcohol (PVA) was identified as the most effective polymer in enhancing solubility. These dispersions were prepared using spray-drying techniques with silodosin and PVA as the polymer, employing solvents such as water, ethanol, and a water-acetone mix. The physicochemical properties and solubility of the dispersions were evaluated. The surface-attached dispersions featured the polymer on a crystalline drug surface, the solvent-wetted dispersions had the amorphous drug on the polymer, and the solvent-evaporated dispersions produced nearly round particles with both components amorphous. Testing revealed that the order of improved solubility was: solvent-evaporated, solvent-wetted, and surface-attached. The results demonstrated that the preparation method of the solid dispersions significantly impacted their physicochemical properties and solubility enhancement.
        4,000원
        2.
        2024.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Al2O3 has excellent sintering properties and is important in semiconductor manufacturing processes that require high-temperature resistance and chemical inertness in a plasma environment. In this study, a comprehensive analysis of the chemical characteristics, physical properties, crystal structure, and dispersion stability of three commercially available Al2O3 powders was conducted. The aim was to provide a technological foundation for selecting and utilizing appropriate Al2O3 powders in practical applications. All powders exhibited α-Al2O3 as the main phase, with the presence of beta-phase Na2O-11Al2O3 as the secondary phase. The highest Na+ ion leaching was observed in the aqueous slurry state due to the presence of the secondary phase. Although the average particle size difference among the three powders was not significant, distinct differences in particle size distribution were observed. ALG-1SH showed a broad particle size distribution, P162 exhibited a bimodal distribution, and AES-11 displayed a uniform unimodal distribution. Highconcentration Al2O3 slurries showed differences in viscosity due to ion release when no dispersant was added, affecting the electrical double-layer thickness. Polycarboxylate was found to effectively enhance the dispersion stability of all three powders. In the dispersion stability analysis, ALG-1SH exhibited the slowest sedimentation tendency, as evidenced by the low TSI value, while P162 showed faster precipitation, influenced by the particle size distribution.
        4,000원
        3.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Application of the membrane process to wastewater treatment and reuse has been increasing due to water shortage, water pollution and an increase in water demand. Membrane fouling including biofouling should be controlled to extend its application. In this study, modulation of diffusible signal factor (DSF) system, the quorum sensing (QS) system that regulates EPS formation by microorganisms, was considered as a promising option to manage biofouling. Among many DSF compounds, cis -2-Decenoic acids (CDA) was selected. The experimental results showed that, as the CDA concentration increased, the density and number of stained cells decreased. The lowest density was observed when the CDA concentration of 300 nM was applied. The EPS on membrane surface decreased with increasing concentration of CDA. The CDA dosing also affected the EPS composition. At the 300 nM CDA dose, the total EPS reduced by up to 57% and the protein fraction by 35%. This study revealed the biofilm reduction effect of CDA under various conditions for MBR sludge. The application of CDA can be adapted to control biofouling in the MBR process.
        4,300원
        4.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Oxide dispersion-strengthened (ODS) steel has excellent high-temperature properties, corrosion resistance, and oxidation resistance, and is expected to be applicable in various fields. Recently, various studies on mechanical alloying (MA) have been conducted for the dispersion of oxide particles in ODS steel with a high number density. In this study, ODS steel is manufactured by introducing a complex milling process in which planetary ball milling, cryogenic ball milling, and drum ball milling are sequentially performed, and the microstructure and high-temperature mechanical properties of the ODS steel are investigated. The microstructure observation revealed that the structure is stretched in the extrusion direction, even after the heat treatment. In addition, transmission electron microscopy (TEM) analysis confirmed the presence of oxide particles in the range of 5 to 10 nm. As a result of the room-temperature and high-temperature compression tests, the yield strengths were measured as 1430, 1388, 418, and 163 MPa at 25, 500, 700, and 900oC, respectively. Based on these results, the correlation between the microstructure and mechanical properties of ODS steel manufactured using the composite milling process is also discussed.
        4,000원
        5.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we investigate the effect of the duration of mechanical alloying on the microstructures and mechanical properties of ODS ferritic/martensitic steel. The Fe(bal.)-10Cr-1Mo pre-alloyed powder and Y2O3 powder are mechanically alloyed for the different mechanical alloying duration (0 to 40 h) and then constantly fabricated using a uniaxial hot pressing process. Upon increasing the mechanical alloying time, the average powder diameter and crystallite size increased dramatically. In the initial stages within 5 h of mechanical alloying, inhomogeneous grain morphology is observed along with coarsened carbide and oxide distributions; thus, precipitate phases are temporarily observed between the two powders because of insufficient collision energy to get fragmented. After 40 h of the MA process, however, fine martensitic grains and uniformly distributed oxide particles are observed. This led to a favorable tensile strength and elongation at room temperature and 650oC.
        4,000원
        6.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        구조물에 장기적으로 발생하는 노후화를 정량적으로 파악하기 위해 상시진동 데이터를 활용한 일반화된 모니터링 시스템에 관한 연구가 세계적으로 활발히 수행중이다. 본 연구에서는 구조물에서 장기적으로 취득되는 동특성을 앙상블 학습에 활용하여 구조물의 이상을 감지하기 위한 보급형 엣지 컴퓨팅 시스템을 구축하였다. 시스템의 하드웨어는 라즈베리파이와 보급형 가속도계, 기울기센서, GPS RTK 모듈, 로라 모듈로 구성됐다. 실험실 규모의 구조물 모형 진동실험을 통해 동특성을 활용한 앙상블 학습의 구조물 이상 감지를 검증하였으며, 실험을 기반으로 한 실시간 동특성 추출 분산처리 알고리즘을 라즈베리파이에 탑재하였다. 구축된 시스템을 하우징하고 포항시 행정복지센터에 설치하여 데이터를 취득함으로써 개발된 시스템의 현장 적용성을 검증하였다.
        4,000원
        7.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 에틸아세테이트와 피페라진을 적용한 가죽 표면 코팅제로 사용할 수용성 폴리우레탄의 합성을 위해 poly(tetramethylene ether) glycol(PTMG)를 기반으로 isoporon diisocyanate (IPDI)와 dimethylolbutanoic acid(DMBA)의 반응을 통해 프리폴리머를 합성하였다. 이후 수분산시킨 수지에 피페라진을 0.01M, 0.03M, 0.05M, 0.07M을 쇄연장 반응을 해서 각각의 인장강도, 연신율, CV(cyclic voltammetry), 내용제성 분석을 실시했다. 준비된 시료의 인장강도는 피페라진 함량 0.07M일 때 5.422 kgf/㎟ 로 측정되었으며, 연신율을 측정한 결과 피페라진이 0.01M 일 때 587 %로 측정되었다. 내용제성 분석결과 피페라진 함량과 상관없이 동등한 내용제성으로 측정되었으며, CV 측정을 통해 피페라진 함량에 따라 산화환원전위가 변화되는 것을 확인 할 수 있었다.
        4,000원
        9.
        2019.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study examines the role of the nano- and micro-particle ratio in dispersion stability and mechanical properties of composite resins for SLA(stereolithography) 3D printing technology. VTES(vinyltriethoxysilane)-coated ZrO2 ceramic particles with different nano- and micro-particle ratios are prepared by a hydrolysis and condensation reaction and then dispersed in commercial photopolymer (High-temp) based on interpenetrating networks(IPNs). The coating characteristics of VTES-coated ZrO2 particles are observed by FE-TEM and FT-IR. The rheological properties of VTEScoated ZrO2/High-temp composite solution with different particle ratios are investigated by rheometer, and the dispersion properties of the composite solution are confirmed by relaxation NMR and Turbiscan. The mechanical properties of 3Dprinted objects are measured by a tensile test and nanoindenter. To investigate the aggregation and dispersion properties of VTES-coated ZrO2 ceramic particles with different particle ratios, we observe the cross-sectional images of 3D printed objects using FE-SEM. The 3D printed objects of the composite solution with nano-particles of 80 % demonstrate improved mechanical characteristics.
        4,000원
        10.
        2018.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In anion exchange membrane fuel cells, Pd nanoparticles are extensively studied as promising non-Pt catalysts due to their electronic structure similar to Pt. In this study, to fabricate Pd nanoparticles well dispersed on carbon support materials, we propose a synthetic strategy using mixed organic ligands with different chemical structures and functions. Simultaneously to control the Pd particle size and dispersion, a ligand mixture composed of oleylamine(OA) and trioctylphosphine(TOP) is utilized during thermal decomposition of Pd precursors. In the ligand mixture, OA serves mainly as a reducing agent rather than a stabilizer since TOP, which has a bulky structure, more strongly interacts with the Pd metal surface as a stabilizer compared to OA. The specific roles of OA and TOP in the Pd nanoparticle synthesis are studied according to the mixture composition, and the oxygen reduction reaction(ORR) activity and durability of highly-dispersed Pd nanocatalysts with different particles sizes are investigated. The results of this study confirm that the Pd nanocatalyst with large particles has high durability compared to the nanocatalyst with small Pd nanoparticles during the accelerated degradation tests although they initially indicated similar ORR performance.
        4,000원
        11.
        2018.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study is conducted as a preliminary research to verify the feasibility of Ti-based Oxide dispersion strengthened (ODS) alloy. Pure-Ti powder is mixed with Y2O3 powder and subsequently, mechanically alloyed at -150oC. The Ti-based ODS powder is hot-isostatically pressed and subsequently hot-rolled for recrystallization. The microstructure consists of elongated grains and Y excess fine particles. The oxide particle size is larger than that of the typical Febased ODS steel. Tensile test shows that the tensile ductility is approximately 25%, while the strength is significantly higher than that of pure Ti. The high-temperature hardness of the Ti-ODS alloy is also significantly higher than that of pure Ti at all temperatures, while being lower than that of Ti-6Al-4V. The dimple structure is well developed, and no evidence of cleavage fracture surface is observed in the fracture surface of the tensile specimen.
        3,000원
        12.
        2018.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to expand the application of oxide dispersion-strengthened (ODS) steel, a composite material is manufactured by adding mechanically alloyed ODS steel powder to conventional steel and investigated in terms of microstructure and wear properties. For comparison, a commercial automobile part material is also tested. Initial microstructural observations confirm that the composite material with added ODS steel contains i) a pearlitic Fe matrix area and ii) an area with Cr-based carbides and ODS steel particles in the form of a Fe-Fe3C structure. In the commercial material, various hard Co-, Fe-Mo-, and Cr-based particles are present in a pearlitic Fe matrix. Wear testing using the VSR engine simulation wear test confirms that the seatface widths of the composite material with added ODS steel and the commercial material are increased by 24% and 47%, respectively, with wear depths of 0.05 mm and 0.1 mm, respectively. The ODS steel-added composite material shows better wear resistance. Post-wear-testing surface and cross-sectional observations show that particles in the commercial material easily fall off, while the ODS steel-added material has an even, smooth wear surface.
        4,000원
        13.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to investigate the optimum conditions of dispersion and strength to maximize the mechanical properties of woody cellulose nano–crystal (CNC). As a dispersing method, ultrasonic dispersing machine and magnetic stirrer were used as the mechanical dispersion method. The mixing ratio of cellulose nano-crystals (CNCs) was 0.2% and the dispersion time was 10 minutes. Steam curing was carried out for 6, 24 and 48 hours. Based on the experimental results, we will propose source technology regarding CNC for construction materials.
        4,000원
        15.
        2017.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To improve dispersibility of cereal powder without additives, granulation of cereal powder was conducted using fluidized- bed granulator. Operation condition was sample 300 g, internal temperature 40°C, ventilation speed 30-90 m3/ h, inlet temperature 90°C and spray pressure 2.5 bar. The amount of distilled water (20-45%) as binder, granulation time (10-15 min) and drying time (3-10 min) were controlled. Mean diameter over volume (Brouckere mean, D4,3) was increased from 123 μm to 263 μm and dispersibility was improved from 73% to 92.25% at experiment conditions. Wettability (wetting time) was drastically decreased from 5,000 second to 7 second. Granulation of cereal powder did not affect sinkability and mean diameter over volume as wet analysis was about the same between raw and granulated cereals. Such phenomenon means that granulation with only water as binder enables cereal powder to disperse in water or milk without rapid sedimentation.
        4,000원
        16.
        2017.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present work, we use multiwall carbon nanotubes (MWCNT) as the starting material for the fabrication of sintered carbon steel. A comparison is made with conventionally sintered carbon steel, where graphite is used as the starting material. Milling is performed using a horizontal mill sintered in a vacuum furnace. We analyze the grain size, number of pores, X-ray diffraction patterns, and microstructure. Changes in the physical properties are determined by using the Archimedes method and Vickers hardness measurements. The result shows that the use of MWCNTs instead of graphite significantly reduces the size and volume of the pores as well as the grain size after sintering. The addition of Y2O3.to the Fe-MWCNT samples further inhibits the growth of grains.
        3,000원
        17.
        2017.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Nanosized and aggregated Y2O3:Eu Red phosphors were prepared by template method from metal salt impregnated into crystalline cellulose. The particle size and photoluminescent property of Y2O3:Eu red phosphors were controlled by variation of the calcination temperature and time. Dispersed nanosol was also obtained from the aggregated Y2O3:Eu Red phosphor under bead mill wet process. The dispersion property of the Y2O3:Eu nanosol was optimized by controlling the bead size, bead content ratio and milling time. The median particle size (D50) of Y2O3:Eu nanosol was found to be around 100 nm, and to be below 90 nm after centrifuging. In spite of the low photoluminescent properties of Y2O3:Eu nanosol, it was observed that the photoluminescent property recovered after re-calcination. The dispersion and photoluminescent properties of Y2O3:Eu nanosol were investigated using a particle size analyzer, FE-SEM, and a fluorescence spectrometer.
        4,000원
        18.
        2016.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Al2O3 nanosol dispersed under ethanol or N-Methyl-2-pyrrolidone(NMP) was studied and optimized with various dispersion factors and by utilizing the silane modification method. The two kinds of Al2O3 powders used were prepared by thermal decomposition method from aluminum ammonium sulfate(AlNH4(SO4)2) while controlling the calcination temperature. Al2O3 sol was prepared under ethanol solvent by using a batch-type bead mill. The dispersion properties of the Al2O3 sol have a close relationship to the dispersion factors such as the pH, the amount of acid additive(nitric acid, acetic acid), the milling time, and the size and combination of zirconia beads. Especially, Al2O3 sol added 4 wt% acetic acid was found to maintain the dispersion stability while its solid concentration increased to 15 wt%, this stability maintenance was the result of the electrostatic and steric repulsion of acetic acid molecules adsorbed on the surface of the Al2O3 particles. In order to observe the dispersion property of Al2O3 sol under NMP solvent, Al2O3 sol dispersed under ethanol solvent was modified and solventexchanged with N-Phenyl-(3-aminopropyl)trimethoxy silane(APTMS) through a binary solvent system. Characterization of the Al2O3 powder and the nanosol was observed by XRD, SEM, ICP, FT-IR, TGA, Particles size analysis, etc.
        4,000원
        19.
        2016.11 구독 인증기관·개인회원 무료
        본 연구에서는 최근 분리, 흡착과 같은 물리적인 수처리 공정이 중요해짐에 따라 Track-etched polycarbonate(PC) membrane이 친수성이며 균일한 기공크 기를 가지고 기계적 강도가 우수하다는 점을 이용하여 표면이 하전되어있는 입자를 포함한 콜로이드 용액의 제거능력에 대해 조사형 분리 특성을 파악하였다. 유화중합을 이용하여 각각 양전하, 음전하로 각각 하전된 균일하며 착색된 나노 입자(70 ~200nm)를 제조하고, SEM, DSC, FT-IR 및 제타 전위를 측정하여 라텍스의 특성을 파악하였다. 이후 PC membrane의 표면전하 및 기공크기와 입자의 표면전하 및 입자크기에 따른 수투과도 및 배제율을 조사하였다.
        20.
        2016.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PPG와 PTMG의 몰비를 달리하면서 첨가하여 합성된 폴리우레탄 수지의 물리적 특성을 SEM, FT-IR, UTM 을 이용하여 측정하였다. 본 연구를 통해 4개의 메틸렌기를 포함한 PTMG의 몰비 가 증가함에 따라 내마모도(60.26 mg.loss), 인장강도(5.24 kgf/㎟)가 증가함을 알 수 있었다. 반대로 연 신율(297 %)은 감소함을 확인 할 수 있었으며. 톨루엔을 이용한 내용제성 물성측정 결과로부터 PTMG 의 반응 몰비 증가에 따른 물성 증감 효과는 없었다. 또한 PTMG의 몰비가 증가함에 따라 점도(4.8 cp) 가 상승함을 확인 할 수 있었다.
        4,000원
        1 2 3 4 5