본 연구는 MaxEnt(Maximum Entropy Moedl) 모형을 이용하여 서울 도심 지역에서 너구리(Nyctereutes procyonoides) 출현 지역을 예측하고, 너구리 출몰에 영향을 미치는 환경 요인을 분석하였다. 분석은 2018년부터 2022년까지 수집된 서울시 야생동물센터의 구조 기록을 사용하였다. 토지 피복, 도로 면적, 경사도, 먹이원까지의 거리, 인구 밀도, NDVI(Normalized Difference Vegetation Index), 수역까지의 거리, 초지 면적을 환경 변수로 채택하여 가장 예측력이 높은 모델을 도출하였다. 분석 결과, 너구리 출몰 가능성이 높은 지역은 초지와 나지였고, 도로 밀도가 낮은 지역(<20%)에서 출몰할 가능성이 더 높았다. 또한 너구리는 경사가 완만하고(1.7˚), 먹이원에 가까우며(26.78m), 인구 밀도가 낮은(21.70명 /ha) 지역에서 발생할 가능성이 더 높았다. 다른 요인으로는 낮은 식생 밀도(NDVI 0.17), 하천과의 근접성(32.26m), 넓은 초지 지역(31.14%)에서 너구리가 출몰할 가능성이 높은 것으로 예측되었다. 서울 전역 중 약 65.42㎢(10.96%)가 잠재적인 너구리 발생 지역으로 확인되었으며, 주요 지역은 하천 주변, 산림 경계부, 도시공원 및 인근 초지와 농경지 주변이었다. 이 중 28개 지역(송파구 6개, 강서구 5개, 강남구 4개, 강동구 3개, 서초구 3개, 광진구, 노원구, 동대문구, 동작구, 마포구, 은평구, 중랑구 각각 1개 지역)이 너구리 발생 확률이 가장 높은 곳으로 확인되었다. 본 연구의 결과는 시민과 너구리의 공존 방안을 마련하는 데 중요한 기초 자료를 제공하며, 이를 통한 도시생태 전략 수립의 근거로 활용할 수 있을 것이다.
세계의 많은 도시들은 하천과 항구와 함께 발전해 왔으며, 고대부터 현대까지 교통과 물류의 주요한 축으로 기능하였다. 본 연구는 한강이 가로지르는 서울을 포함하여, 세계 여러 도시에서 현재 운영되고 있는 수상교통 시스템을 조사하였고, 이를 바탕으로 설문조사 를 통해 데이터를 수집, 다항 로지스틱 회귀분석을 통해 수상교통에 대한 사람들의 인식에 영향을 미치는 요인을 알아보았다. 연구의 목적은 수상교통의 특성, 이용자의 개인적 성향 등을 고려하여 수상교통의 이용 의향 여부와 통근형과 관광형 수상교통에 대한 선호 도를 분석하는 것이다. 서울에 거주하고 근무하는 150명의 직장인을 대상으로 온라인 설문조사를 실시하였으며, 세계 각국의 도시 수 상교통에 대한 사전 조사를 통해 공통적 특성을 파악하였다. 설문조사는 인구통계학적 특성, 직업 관련 요인, 도시 수상교통에 대한 인식, 교통수단 특성의 중요성, 개인 성향 등을 조사할 수 있도록 구성하였다. 분석은 빈도분석, 요인분석, 신뢰도 분석을 거쳐 다항 로지스틱 회귀분석을 통해 각 요인의 영향을 정량적으로 파악하였다. 분석 결과, 수상교통의 이용 의향 여부에 유의미한 영향을 미치 는 요인에는 연령, 출근 시간, 출근 시 주 교통수단, 그리고 개인 성향 중 이동 시 넓은 시야를 확보하고 풍경을 관람하는 것을 선호 하는 성향, 새로운 것을 시도하는 것을 좋아하는 성향이 있는 것으로 분석되었다. 통근형과 관광형 간의 선호도에 유의미한 영향을 미 치는 요인으로는 출근 시간과, 개인 성향 중 교통수단의 안전성에 대한 민감도, 여행 중 야외 활동에 대한 선호도가 있는 것으로 분석 되었다. 본 연구는 도시 수상교통에 대한 이용자 특성과 선호도 간의 관계를 파악하여 향후 수상 공간의 교통수단 계획에 기여할 수 있는 통찰을 제공한다.
In an influential paper, Choi and Kim (2010) derived waiting times in an queuing model under net neurality and under prioritization. In this short paper, we argue that the waiting times of content transmission that Choi and Kim (2010) derived by using the gueuing model under the non-preemptive priority rule are miscalculated. We provide corrected waiting times in the queuing model in the prioritization case. We also show that this correction does not affect their main results on the delay time and the incentive to invest in the network capacity qualitatively.
원전 내 전기기기의 내진성능 평가는 안전성 확보에 매우 중요하다. 이 연구에서는 원전에 설치되는 전기기기의 동특성 및 현장조사 결과를 참고하여 모형 캐비닛과 앵커기초를 설계 및 제작하였다. 제작된 모형 캐비닛을 대상으로 진동대실험을 수행하였다. 실험 결과를 바탕으로 유한요소모델을 작성하고 지진응답해석을 수행하였다. 입력지진동이 커짐에 따른 실험 및 해석 결과를 비교하여 모형 캐비닛의 지진거동특성을 분석하였다. 두 결과에 대한 모형 캐비닛의 지진거동은 다르며 내진성능에 큰 차이가 발생할 수 있다. 따라서 캐비닛과 콘크리트 기초 사이의 상호작용을 고려할 수 없는 경우 캐비닛의 지진거동 특성은 실험적으로 평가하는 것이 적절할 것으로 판단하였다.
In the post-COVID-19, the food industry is rapidly reshaping its market structure toward online distribution. Rapid delivery system driven by large distribution platforms has ushered in an era of online distribution of fresh seafood that was previously limited. This study surveyed 1,000 consumers nationwide to determine their online seafood purchasing behaviors. The research methodology used factor analysis of consumer lifestyle and Heckman’s ordered probit sample-selection model. The main results of the analysis are as follows. First, quality, freshness, selling price, product reviews from other buyers, and convenience are particularly important considerations when consumers purchase seafood from online shopping. Second, online retailers and the government must prepare measures to expand seafood consumption by considering household characteristics and consumer lifestyles. Third, it was analyzed that consumers trust the quality and safety of seafood distributed online platforms. It is not possible to provide purchase incentives to consumers who consider value consumption important, so improvement measures are needed. The results of this study are expected to provide implications on consumer preferences to online platforms, seafood companies, and producers, and can be used to establish future marketing strategies.
PURPOSES : This study aimed to identify factors affecting the duration of traffic incidents in tunnel sections, as accidents in tunnels tend to cause more congestion than those on main roads. Survival analysis and a Cox proportional hazards model were used to analyze the determinants of incident clearance times. METHODS : Tunnel traffic accidents were categorized into tunnel access sections versus inner tunnel sections according to the point of occurrence. The factors affecting duration were compared between main road and tunnel locations. The Cox model was applied to quantify the effects of various factors on incident duration time by location. RESULTS : Key factors influencing mainline incident duration included collision type, driver behavior and gender, number of vehicles involved, number of accidents, and post-collision vehicle status. In tunnels, the primary factors identified were collision type, driver behavior, single vs multi-vehicle involvement, and vehicles stopping in the tunnel after collisions. Incidents lasted longest when vehicles stopped at tunnel entrances and exits. In addition, we hypothesize that incident duration in tunnels is longer than in main roads due to the reduced space for vehicle handling. CONCLUSIONS : These results can inform the development of future incident management strategies and congestion mitigation for tunnels and underpasses. The Cox model provided new insights into the determinants of incident duration times in constrained tunnel environments compared to open main roads.
Approximately 40,000 elevators are installed every year in Korea, and they are used as a convenient means of transportation in daily life. However, the continuous increase in elevators has a social problem of increased safety accidents behind the functional aspect of convenience. There is an emerging need to induce preemptive and active elevator safety management by elevator management entities by strengthening the management of poorly managed elevators. Therefore, this study examines domestic research cases related to the evaluation items of the elevator safety quality rating system conducted in previous studies, and develops a statistical model that can examine the effect of elevator maintenance quality as a result of the safety management of the elevator management entity. We review two types: odds ratio analysis and logistic regression analysis models.
In this study, we propose a novel approach to analyze big data related to patents in the field of smart factories, utilizing the Latent Dirichlet Allocation (LDA) topic modeling method and the generative artificial intelligence technology, ChatGPT. Our method includes extracting valuable insights from a large data-set of associated patents using LDA to identify latent topics and their corresponding patent documents. Additionally, we validate the suitability of the topics generated using generative AI technology and review the results with domain experts. We also employ the powerful big data analysis tool, KNIME, to preprocess and visualize the patent data, facilitating a better understanding of the global patent landscape and enabling a comparative analysis with the domestic patent environment. In order to explore quantitative and qualitative comparative advantages at this juncture, we have selected six indicators for conducting a quantitative analysis. Consequently, our approach allows us to explore the distinctive characteristics and investment directions of individual countries in the context of research and development and commercialization, based on a global-scale patent analysis in the field of smart factories. We anticipate that our findings, based on the analysis of global patent data in the field of smart factories, will serve as vital guidance for determining individual countries' directions in research and development investment. Furthermore, we propose a novel utilization of GhatGPT as a tool for validating the suitability of selected topics for policy makers who must choose topics across various scientific and technological domains.
In this paper, a dynamic centrifuge model test was conducted on a 24.8-meter-deep excavation consisting of a 20 m sand layer and 4.8 m bedrock, classified as S3 by Korean seismic design code KDS 17 10 00. A braced excavation wall supports the hole. From the results, the mechanism of seismically induced earth pressure was investigated, and their distribution and loading points were analyzed. During earthquake loadings, active seismic earth pressure decreases from the at-rest earth pressure since the backfill laterally expands at the movement of the wall toward the active direction. Yet, the passive seismic earth pressure increases from the at-rest earth pressure since the backfill pushes to the wall and laterally compresses at it, moving toward a passive direction and returning to the initial position. The seismic earth pressure distribution shows a half-diamond distribution in the dense sand and a uniform distribution in loose sand. The loading point of dynamic thrust corresponding with seismic earth pressure is at the center of the soil backfill. The dynamic thrust increased differently depending on the backfill's relative density and input motion type. Still, in general, the dynamic thrust increased rapidly when the maximum horizontal displacement of the wall exceeded 0.05 H%.
혁신조달 제도는 전략적 공공조달 정책의 일환으로 혁신제품 지정 및 우선구매 제도를 활용해 기업의 혁신역량 향상과 공공부문의 사회문제 해결능력 향상을 동시에 추구하는 정책으로 도입됐다. 혁신제품에 대한 시범구매 사업은 2019년에 처음 도입됐으며 2020년부터 정부 부처의 혁신제품 지정·발굴 체계가 확립된 후 혁신제품 우선구매제도가 본격적으로 실시됐다. 이에 본 연구는 혁신조달 제도가 본격적으로 시행된 이후 해당 제도의 기업지원 효과에 초점을 맞춰 정량적 분석을 진행했다. 이를 위해 2017년에서 2021년까지의 기업 재무제표 및 고용 자료를 이용했으며, 분석방법으로 성향점수매칭(PSM) 및 이중차분(DID) 방법을 활용했다. 본 연구를 통해 혁신조달 제도가 기업성장과 고용증대에 기여했으며 추가적인 공공 및 민간판로 개척 효과를 창출했음을 확인할 수 있었다. 한편 혁신조달 참여기업이 제품지정 종료 이후에도 자생성을 갖추기 위해서는 혁신제품 지정기업과 기존의 중소기업 지원정책을 적극 매칭하는 등 혁신조달 제도를 고도화할 필요가 있다.
PURPOSES : The primary objective of this study is to analyze the relationship between the factors that affect traffic incident duration in the mainline, tunnel, and ramp segments of an expressway. In addition, this study derived the most suitable statistical prediction model based on various incident duration distributions. METHODS : South Korean expressway crash data for 11 years, from 2011 to 2021, were analyzed. The incident durations on the mainline, tunnel, and ramp segments were selected using the accelerated failure time model, which is a parametric survival analysis approach. RESULTS : The mainline segment showed that the incident duration increased during accidents, including guard pipe collisions, multivehicle collisions, and snowfall. In particular, collisions in a tunnel with shoulder facilities increase the incident duration, while decreasing the time in the ramp segment. CONCLUSIONS : The incident duration model for each segment type yielded the most accurate results when applying a log-logistic distribution.
본 연구는 서울교육청 교육연구정보원의 「서울교육종단연구(SELS)」에 서 수집된 자료를 활용하여, 고등학생 3학년인 9차(2018년) 자료에서 학 생 2,793명을 연구 대상자로 정하였다. 청소년의 학교만족도와 관련한 예측요인을 확인하기 위해 SPSS 26.0을 사용하여 의사결정나무모형 분 석을 실시하였다. 연구결과를 살펴보면, 첫째, 청소년의 학교만족도의 분 류에서 개인적인 요인으로는 성별, 자아개념, 자기평가, 사회적 관계 요 인으로 보호자, 학교교사, 학교 특성/문화 요인으로는 학교에 대한 평가, 학교풍토가 유의한 변인으로 확인되었다. 둘째, 학교만족도 분류에 영향 을 주는 변인들 중에서는 학교에 대한 평가가 가장 영향력을 가진 변인 으로 나타났다. 셋째, 학교교사 수치가 높은 집단에서는 학교풍토, 자아 개념이 분류의 중요한 의미 있는 변인이었고, 학교교사 수치가 낮은 집 단에서는 자기평가, 학교풍토, 학교에 대한 평가가 영향력 있는 변인이었 다. 넷째, 학교에 대한 평가 수준 및 학교풍토가 바람직하고 좋으면 학교 만족도가 긍정적으로 상승하는 것으로 확인되었다. 본 연구결과는 청소 년의 학교만족도 증진을 위한 방안 모색, 교육정책 수립 및 프로그램 운 영에 도움이 될 것으로 사료된다.
본 연구는 한국노동패널 자료를 사용하여 선천적 직업적성이 직업만족도에 미치는 영향을 실증분석하였다. 분석을 위해서는 선천적 직업적성을 파악하는 것이 관건인데, 서양의 적성검사 기법은 한계가 있어서 동양사회에서 오랫동 안 실생활에 활용하고 있는 사주분석 기법을 적용하여 선천적 직업적성을 도 출하였다. 실증분석 결과, 첫째, 선천적 직업적성과 실제로 종사하고 있는 직업 유형이 일치한 사람의 직업만족도는 그렇지 않은 사람의 직업만족도보다 높았 다. 둘째, 선천적 직업적성과 종사하고 있는 직업유형과 일치한 사람은 그렇지 않은 사람보다 더 오랫동안 근무하며, 근속기간이 길수록 직업만족도는 높았 다. 셋째, 선천적 직업적성이 직장형이면 임금근로자가 될 가능성이 높았고, 선 천적 직업적성이 사업형이면 비임금근로자가 될 가능성이 높았다. 넷째, 경쟁심리가 강한 사람의 직업만족도는 경쟁 심리가 강하지 않은 사람의 직업만족 도보다 낮았다. 이러한 실증분석 결과는 선천적 직업적성이 직업만족도에 지 대한 영향을 미치고 있음을 입증한다. 직무만족은 삶의 만족과 긍정적인 관계 에 있다. 직무만족이 높을수록 삶의 만족 또한 높아지기 때문에 개인의 삶의 만족을 높이기 위해서는 자신의 선천적 직업적성을 정확히 이해하고, 선천적 직업적성에 맞는 직업유형을 선택하는 것이 무엇보다 중요하다.
This study examines the demand system of shrimp imported from top four countries and domestically produced by using AIDS (Almost Ideal Demand System) model. Top four import countries are Vietnam, Ecuador, China, and Malaysia based on the value of imports in 2021. As results of the analysis, the demand system of shrimp turn out to be below. First, the relationship of domestic shrimp and imported shrimp (Ecuadorian and Vietnamese) is identified as complements or substitutes depending on whether the income effect is considered. This result implies that imported shrimp supplements domestic supply against excess demand while homogeneous shrimp products competes with domestic shrimp in fish market. Second, the relationship among imported shrimps turned out to be both substitutes and complements. Especially, the Vietnamese shrimp is complementary with Chinese and Malaysian shrimp, but substitutes of Ecuadorian. It is assumed that adjoining Asian countries shares similar shrimp species and processing system which differentiates from Ecuadorian. Finally, the study included quarter as dummy variable and GDP as instrumental variable of expenditure in the model. The result confirmed that domestic shrimp is highly on demand during the main production season while imported shrimp is mainly demanded during the rest of the season.
The Severe Disaster Punishment Act had recently been established in order to promote safety and health (OSH) management system for severe accident prevention. OSH management system is primarily designed based on risk assessments; however, companies in industries have been experiencing difficulties in hazard identification and selecting proper measures for risk assessments and accident prevention. This study intended to introduce an accident analysis method based on epidemiological model in finding hazard and preventive measures. The accident analysis method employed in this study was proposed by the U.S. Department of Energy. To demonstrate the effectiveness of the accident analysis method, this study applied it to two accident cases occurred in construction and manufacturing industries. The application process and results of this study can be utilized in improving OSH management system and preventing severe accidents.
PURPOSES : This study aims to conduct a sensitivity analysis to determine the major factors affecting traffic accidents involving elderly pedestrians.
METHODS : In this study, a regression tree model was built based on a non-parametric statistical model using data on traffic accidents involving elderly pedestrians. Using this model, we analyzed the degree of change in the probability of pedestrian fatalities.
RESULTS : Results of the model analysis show that the first major factor combination affecting traffic accidents involving elderly pedestrians is speeding, night time, and road markers. The second combination is night time and arterial roads (national and local highways). The last combination that may lead to such accidents is heavy vehicles and federally funded local highways.
CONCLUSIONS : Preventive measures, such as speed control, proper lighting, median strips, designation of pedestrian protection zones, and guidance of detours, are necessary to manage high-risk combinations causing accidents of the elderly.
Data commentary is an important text type in research articles; however, its discourse model is often challenging to access because it is embedded in the upper genres such as textbook, weather forecast, and journal article. This study aims to establish a discourse model of data commentary, with a focus on academic research papers in Economics and Business administration journals. To accomplish this, this study employs Move analysis and SF-MDA(Systemic Functional-Multimodal Discourse Analysis) to investigate the moves of data commentaries and the metafunctional meanings of each step. The results indicate that the data commentary discourse model consists of three moves: (1) summarizing the topic and methodology, (2) representing figure and numbers, and (3) analyzing and commenting on results. Additionally, 22 steps are identified for each move that creates metafunctional meaning: ideational, interpersonal, and textual.
There has been growing attention on the well-being of people with disabilities. The purpose of this study was twofold: (1) to investigate the associations between individuals’ socio-demographic and psychological characteristics and clothing expenditure, and (2) to examine the moderated mediation effect of self-efficacy and acceptance of disability on the association between dependency on others and happiness among people with visual impairment. This study was based on secondary analysis of data from the second wave of the 6th Panel Survey of Employment for the Disabled collected by the Employment Development Institute. The results of this study showed that average monthly expenditure on clothing was positively associated with self-efficacy, happiness, and acceptance of disability, while being negatively associated with dependency on others. The results also confirmed that self-efficacy mediated the association between dependency on others and happiness. A conditional direct effect of dependency on others on happiness was found, in which negative associations were significant among people with visual impairment who had low and mean levels of acceptance of disability (but not high levels). In addition, there was a significant conditional indirect effect, in which the indirect and negative effect of dependency on others on happiness via self-efficacy was significant for those with low and average levels of acceptance of disability. These findings support the importance of enhancing the independence and acceptance of disability among people with visual impairment, which ultimately contributes to their happiness.
In a group-testing method, instead of testing a sample, for example, blood individually, a batch of samples are pooled and tested simultaneously. If the pooled test is positive (or defective), each sample is tested individually. However, if negative (or good), the test is terminated at one pooled test because all samples in the batch are negative. This paper considers a queueing system with a two-stage group-testing policy. Samples arrive at the system according to a Poisson process. The system has a single server which starts a two-stage group test in a batch whenever the number of samples in the system reaches exactly a predetermined size. In the first stage, samples are pooled and tested simultaneously. If the pooled test is negative, the test is terminated. However, if positive, the samples are divided into two equally sized subgroups and each subgroup is applied to a group test in the second stage, respectively. The server performs pooled tests and individual tests sequentially. The testing time of a sample and a batch follow general distributions, respectively. In this paper, we derive the steady-state probability generating function of the system size at an arbitrary time, applying a bulk queuing model. In addition, we present queuing performance metrics such as the offered load, output rate, allowable input rate, and mean waiting time. In numerical examples with various prevalence rates, we show that the second-stage group-testing system can be more efficient than a one-stage group-testing system or an individual-testing system in terms of the allowable input rates and the waiting time. The two-stage group-testing system considered in this paper is very simple, so it is expected to be applicable in the field of COVID-19.