Dissolved organic matter (DOM) is a key component in the biogeochemical cycling in freshwater ecosystem. However, it has been rarely explored, particularly complex river watershed dominated by natural and anthropogenic sources, such as various effluent facility and livestock. The current research developed a new analytical method for TOC/TN (Total Organic Carbon/Total Nitrogen) stable isotope ratio, and distinguish DOM source using stable isotope value (δ13C-DOC) and spectroscopic indices (fluorescence index [FI] and biological index [BIX]). The TOC/TN-IR/MS analytical system was optimized and precision and accuracy were secured using two international standards (IAEA-600 Caffein, IAEA-CH-6 Sucrose). As a result of controlling the instrumental conditions to enable TOC stable isotope analysis even in low-concentration environmental samples (<1 mgC L-1), the minimum detection limit was improved. The 12 potential DOM source were collected from watershed, which includes top-soils, groundwater, plant group (fallen leaves, riparian plants, suspended algae) and effluent group (pig and cow livestock, agricultural land, urban, industry facility, swine facility and wastewater treatment facilities). As a result of comparing characteristics between 12 sources using spectroscopic indices and δ13C-DOC values, it were divided into four groups according to their characteristics as a respective DOM sources. The current study established the TOC/TN stable isotope analyses system for the first time in Korea, and found that spectroscopic indices and δ13C-DOC are very useful tool to trace the origin of organic matter in the aquatic environments through library database.
Bioreactors are devices used by sewage treatment plants to process sewage and which produce active sludge, and sediments separated by solid-liquid are treated in anaerobic digestion tanks. In anaerobic digestion tanks, the volume of active sludge deposits is reduced and biogas is produced. After dehydrating the digestive sludge generated after anaerobic digestion, anaerobic digested wastewater, which features a high concentration of organic matters, is generated. In this study, the decomposition of organic carbon and nitrogen was studied by advanced oxidation process. Ozone-microbubble flotation process was used for oxidation pretreatment. During ozonation, the TOC decreased by 11.6%. After ozone treatment, the TOC decreased and the removal rate reached 80.4% as a result of the Ultra Violet-Advanced Oxidation Process (UV-AOP). The results with regard to organic substances before and after treatment differed depending on the organic carbon index, such as CODMn, CODCr, and TOC. Those indexes did not change significantly in ozone treatment, but decreased significantly after the UV-AOP process as the linkage treatment, and were removed by up to 39.1%, 15.2%, and 80.4%, respectively. It was confirmed that biodegradability was improved according to the ratio of CODMn to TOC. As for the nitrogen component, the ammonia nitrogen component showed a level of 3.2×102 mg/L or more, and the content was maintained at 80% even after treatment. Since most of the contaminants are removed from the treated water and its transparency is high, this water can be utilized as a resource that contains high concentrations of nitrogen.
Dry etching of copper thin films is performed using high density plasma of ethylenediamine (EDA)/ hexafluoroisopropanol (HFIP)/Ar gas mixture. The etch rates, etch selectivities and etch profiles of the copper thin films are improved by adding HFIP to EDA/Ar gas. As the EDA/HFIP concentration in EDA/HFIP/Ar increases, the etch rate of copper thin films decreases, whereas the etch profile is improved. In the EDA/HFIP/Ar gas mixture, the optimal ratio of EDA to HFIP is investigated. In addition, the etch parameters including ICP source power, dc-bias voltage, process pressure are varied to examine the etch characteristics. Optical emission spectroscopy results show that among all species, [CH], [CN] and [H] are the main species in the EDA/HFIP/Ar plasma. The X-ray photoelectron spectroscopy results indicate the formation of CuCN compound and C-N-H-containing polymers during the etching process, leading to a good etch profile. Finally, anisotropic etch profiles of the copper thin films patterned with 150 nm scale are obtained in EDA/HFIP/Ar gas mixture.
부산 남항은 도심 속의 다기능 항만으로 공동어시장, 선박수리소, 연근해 및 원양어선 접안시설 등이 설치되어 산업 활동이 활발하다. 산업 활동으로 인해 발생한 유해화학물질이 해저퇴적물에 지속적으로 유입되어 축적되면 수생생태계와 인간에게 영향을 끼칠 수 있다. 따라서 부산 남항에서 2013년 11월(1차), 2014년 11월(2차)에 8개 정점을 선정하여, 해저퇴적물 중 다환방향족탄화수소류(PAHs), 폴리 염화비페닐(PCBs), 부틸계유기주석화합물(BTs)를 분석하여 부산 남항의 농도분포 특성 및 유입원을 밝혀내고자 하였다. 연구 지역에서 PAHs의 평균 농도는 1차, 2차 조사에서 각각 4174.0 ng/g-d.w., 1919.0 ng/g-d.w., PCBs의 평균 농도는 1차, 2차 조사에서 각각 166.3 ng/g-d.w., 21 ng/g-d.w.를 보였으며, BTs의 평균 농도는 1차, 2차 조사에서 각각 50.9 ng/g-d.w., 30.8 ng/g-d.w.를 나타내었다. 유기오염물질의 검출농도는 1차에 비해 2차에서 해저퇴적물 수거로 인해 낮아지는 경향을 보였으며, 본 조사에서 PAHs, PCBs, BTs 유입원은 각각 연소기원, 육상기원, 도시하수 또는 산업폐수에 의한 기원을 확인 할 수 있었다.
The concentrations of volatile organic compounds (VOCs) and odor-inducing substances were measured using selected ion flow tube mass spectrometers (SIFT-MS) and a drone equipped with an air quality monitoring system. SIFT-MS can continuously measure the concentration of VOCs and odor-inducing substances in realtime without any pre-treating steps for the sample. The vehicle with SIFT-MS was used for real-time measurement of VOC concentration at the site boundaries of pollution sources. It is possible to directly analyze VOCs concentration generated at the outlets by capturing air from the pollution sources with a drone. VOCs concentrations of nine spots from Banwol National Industrial Complex were measured by a vehicle equipped with SIFT-MS and were compared with the background concentration measured inside the Metropolitan Air Quality Management Office. In three out of the nine spots, the concentration of toluene, xylene, hydrogen sulfide, and methyl ethyl ketone was shown to be much higher than the background concentration. The VOCs concentrations obtained using drones for high-concentration suspected areas showed similar tendencies as those measured using the vehicle with SIFTMS at the site boundary. We showed that if both the drone and real-time air quality monitoring equipment are used to measure VOCs concentration, it is possible to identify the pollutant sources at the industrial complex quickly and efficiently check sites with high concentrations of VOCs.
Indoor air environments for people are recently being observed because the time we spend inside the house or a building throughout the day has been extended during the present circumstances. This is why formaldehyde and volatile organic compounds (VOCs) are regulated, which can cause Sick Building Syndrome (SBS). There might be other VOCs not regulated by law in newly built collective housing, however, in order to compensate for the reduced concentration of regulated VOCs such as benzene, toluene, ethylbenzene, xylene, and styrene. In this study, the concentration of unregulated VOCs in newly built collective housing structures located in the Seoul Special City was researched to find potential indoor hazards for citizens and to prepare basic data for further research.
유색 용존 유기물의 빛 흡수와 해빙의 가속화는 수생생태계와 열수지 역동성 간의 양적 피드백에 영향을 줄 수 있으므로 극지 해양에서 유색 용존 유기물의 장기 모니터링이 필요하게 되었다. 그러나 극지 환경에서의 관측은 용이하지 않은 접근성과 거친 기상으로 장기 모니터링이 쉽지 않다. 따라서 유색 용존 유기물의 장기 모니터링 장소로서 남극 세종 기지의 가능성을 확인하기 위해, 마리안 소만과 맥스웰 만에서 유색 용존 유기물의 분포와 외부로부터의 영향을 파악하기 위한 관측을 수행하였다. 맥스웰 만 내의 세종 부두와 세종 곶의 72시간 유색 용존 유기물의 변동성을 관측하고, 외부 영향이 없었던 세종 부두에서 2010년 2월에서 11월까지 10 개월간 유색 용존 유기물의 연간 변화와 계절변동을 관측하였다. 세종 부두의 유색 용존 유기물 농도는 가을과 겨울 동안 가장 높고 봄과 여름에 감소하는 뚜렷한 계절 변동성을 보였고, 남극 인근 해역에서 측정된 유색 용존 유기물 농도 자료와 비교하였다. 따라서 우리는 남극해의 열수지에 대한 중요한 요인이자 광화학적 및 생물학적 환경변화에 관한 지시자인 유색 용존 유기물을 장기 모니터링을 위해 적합한 장소로 맥스웰 만의 세종 부두를 제안한다.
This study focused on natural organic matter and trihalomethane removal by ozonation with various ferrous concentration in surface water. Ozonation is more affected by injection concentration than reaction time. dissolved organic carbon removal rates in ozonation increased with the increase in ferrous concentration. The highest removal was obtained at 6 mg/L of ferrous concentration. When 1 mg/L of ferrous was added with 2 mg/L of ozone concentration, it was found to be a rapid decrease in specific ultraviolet absorbance at the beginning of the reaction because ferrous acts as a catalyst for producing hydroxyl radical in ozonation. As ozone concentration increased, trihalomethane formation potential decreased. When 2 mg/L of ozone was injected, trihalomethane formation potential was shown to decrease and then increase again with the increase in ferrous concentration.
We analyzed volatile organic compounds (VOCs) of petroleum-based laundry solvents in closed systems by static headspace analysis and investigated the emission characteristics of odorous compounds emitted from organic solvents in the small-scale dry cleaning process. The compounds containing eight to eleven carbon atoms were analyzed to account for 96.92% of the total peak area in a GC-MS chromatogram. It was found that the compounds with ten carbon atoms showed the largest proportion. In the small-scale dry cleaning process (3 kg of laundry and 40 min of drying time), a total of 36 VOCs was quantified, and the odor contribution of these compounds was evaluated. The sum of the odor quotient (SOQ) was analyzed up to 151±163 in the first 12 min of operation. The main odor-causing compounds were acrolein, ethylbenzene, hexane, acetone, and decane, and their odor contributions were 32.28%, 13.47%, 10.52%, 10.20%, and 8.08%, respectively.
In this study, we listed the VOCs focusing on ozone precursors emitted from printing shops in urban areas. The emission characteristics of the VOCs from workplaces were evaluated in terms of the used inks. As a result of field measurements, more than 80% of detected VOCs showed high values of photochemical ozone creation potential (POCP). The main species were aromatic hydrocarbons such as ethylbenzene, toluene, ethyltoluene, xylene, trimethylbenzene and their isomers, and paraffin hydrocarbons such as nonane, decane, and octane. Comparative examination between pristine ink and the printing process revealed the emission of hydrocarbons with 8 to 12 carbons such as o-xylene to n-dodecane from the used inks and with 3 to 7 carbons such as acetone to 3-methylhexane from the printing process. The major contributors to ozone production in printing industries were toluene (12.2%), heptane (7.43%), and 1,2,3-trimethylbenzene (7.21%) in every step.
본 연구에서는 하수처리유출수의 유기물 성상을 제어하기 위해 서로 다른 흡착제를 적용하여 역삼투막의 막오염 경향성을 관찰하였다. 실험실 규모에서 역삼투막 운전결과, 다중벽탄소나노튜브 (5%), 팽창흑연 (21%), 하수처리유출수(25%), 활성탄 (26%) 순서로 초기대비 투과수량이 감소하였다. 형성된 막오염 물질의 FEEM 분석결과, 활성탄의 경우 팽창흑연, 다중벽탄소나노튜브, 하수처리 유출수에 상대적으로 높은 미생물유래물질에 의한 막오염이 존재하였다. 더 나아가, 분자량 분석 결과를 통해 고분자 미생물유래물질(>15K Da)의 영향이 큰 것을 확인하였다. 결과적으로, 하수재이용공정에서 고분자 미생물유래물질이 역삼투막 효율저하의 주요한 역할을 하며, 이를 저감시키기 위한 방안마련이 필요하다고 판단되었다.
Two sewage treatment facilities were selected to identify odor emission characteristics, focusing on volatile organic compounds (VOCs) and sulfur compounds. The complex odor, 5 kinds of sulfur compounds and 23 kinds of VOCs were analyzed from gas and sludge storages. Hydrogen sulfide was detected in the highest concentration and had the highest odor quotient among the odorous compounds monitored in this study, demonstrating that the contribution of hydrogen sulfide to the complex odor reached up to 90%. For VOCs, the overall contribution to the complex odor was not critical but VOCs can sufficiently trigger an odorous sensation because the sum of the odor quotient reached up to 2.89.
New three emitting compounds, AK-1, AK-2 and AK-3 including diazocine moiety were synthesized through Suzuki-coupling reaction. Physical properties such as optical, electroluminescent properties were investigated. UV-visible spectrum of AK-1, AK-2 and AK-3 in film state showed maximum 392, 393 and 401 nm. PL spectrum of AK-1, AK-2 and AK-3 showed maximum emission wavelength of 472, 473 and 435 nm. Three compounds were used as EML in OLED device: ITO/2-TNATA (60 nm)/NPB (15 nm)/EML (35 nm)/Alq3 (20 nm)/LiF (1 nm)/Al (200 nm). AK-3 OLED device showed C.I.E value of (0.18, 0.26) and luminance efficiency of 0.51 cd/A at 10 mA/cm2. New derivatives including diazocine moiety were introduced as OLED emitting material and the EL efficiency was increased by the proper combination of core and side group.
7-(4-([1,1-biphenyl]-4-yl(9,9-dimethyl-9H-fluoren-2-yl)amino)phenyl)-4-methyl-2H-chromen-2-one (BPFA-C) including coumarin moiety was synthesized through Suzuki aryl-aryl coupling reaction. Optical and electrical properties were examined by UV-visible absorption spectra, PL spectra, and AC-2. UV-visible spectrum of BPFA-C in a film state showed maximum absorption wavelength of 367 nm. PL spectrum of BPFA-C show maximum emission wavelength of 511 nm. BPFA-C showed highly efficient luminescence property. EL spectrum of BPFA-C exhibited a maximum value of 504 nm and BPFA-C device provided luminescence efficiency of 4.59 cd/A, power efficiency of 3.17 lm/W, and CIE (x,y) of (0.25, 0.53) at a current density of 10 mA/cm².
지표수 성상을 재현한 용액을 가압식 한외여과 시스템을 통하여 100 L/m²/h 정속 조건에서 전량 여과하였다. 공극 크기 0.05 μm의 한외여과 중공사막으로 구성된 가압식 모듈을 통해 휴민산(HA) 10 mg/L 용액과 알긴산 나트륨(SA) 10mg/L 용액, 그리고 이 두 용액에 실리카(SiO2) 입자 50 mg/L이 포함된 총 4가지 용액을 여과하였다. 여과 공정은 30분 여과 후 30초 역세와 30초 정세의 주기적 물리 세정과 병행하여 수행되었다. 실험 결과, HA와 SA 용액에 SiO2 입자가 존재하는 경우 파울링 속도는 다소 감소하였으며 특히 SA 여과에서 SiO2 입자 위에 형성된 SA 케이크층이 세정에 의해 SiO2 입자와 함께 탈착되어 물리세정에 의한 분리막 성능 회복이 크게 증가하는 것으로 나타났다.
As the modern society is rapidly developing and people become affluent in materials, many new chemical compounds in different forms of products (e.g., antibiotics, pesticides, detergents, personal care products and plastic goods) are produced, used, and disposed of to the environments. Some of them are persistently having a harmful impact on the environment and mimicking endocrine properties; in general they are present in the environment at low concentrations, so they are called organic pollutants. These organic micropollutants flow to sewage treatment plants via different routes. In this study, the generation characteristics, exposure pathways, detection levels, and environmental impacts of organic micropollutants were critically reviewed. In addition, currently available risk assessment methods and management systems for the compounds were reviewed. The United States Environmental Protection Agency (US EPA), for example, has monitored organic micropollutants and set the monitoring and management of some of the compounds as a priority. To effectively manage organic micropollutants in sewer systems, therefore, we should first monitor organic micropollutants of potential concern and then make a watch list of specific substances systematically, as described in guidelines on listing water pollutants in industrial wastewater.