검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 126

        2.
        2018.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The non-reacting flow field and the movement of sand particles inside a 30MW circulating fluidized bed combustor is numerically simulated via the finite volume method. The primary air is supplied through 23x23 array of nozzles located on the bottom and the secondary air is supplied through 12 inlet pipes located on the side walls. The steady state velocity field shows that a very complex flow pattern is formed in the lower part of the combustor. As the gas moves upward, the velocity magnitude decreases and the gas exits the combustor after hitting the top wall. To investigate the behavior of sand particles with different diameters, a particle tracking calculation is performed by introducing sand particles continuously at the z=3 m plane. For the given air flow rate condition, sand particles smaller than 0.3 mm show a complex movement pattern near the secondary air inlet and then rise toward the outlet.
        4,000원
        4.
        2017.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To improve dispersibility of cereal powder without additives, granulation of cereal powder was conducted using fluidized- bed granulator. Operation condition was sample 300 g, internal temperature 40°C, ventilation speed 30-90 m3/ h, inlet temperature 90°C and spray pressure 2.5 bar. The amount of distilled water (20-45%) as binder, granulation time (10-15 min) and drying time (3-10 min) were controlled. Mean diameter over volume (Brouckere mean, D4,3) was increased from 123 μm to 263 μm and dispersibility was improved from 73% to 92.25% at experiment conditions. Wettability (wetting time) was drastically decreased from 5,000 second to 7 second. Granulation of cereal powder did not affect sinkability and mean diameter over volume as wet analysis was about the same between raw and granulated cereals. Such phenomenon means that granulation with only water as binder enables cereal powder to disperse in water or milk without rapid sedimentation.
        4,000원
        5.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        유동층가스화기는 경제적으로 기술적으로 입증된 기술로서 가장 상용화에 가까운 가능성을 보여주고 있다. 그러나 한국에서는 설계, 현장문제 해결뿐 아니라 파일럿 규모의 설비 운전 등이 부족하 여 상용화에 이르지 못하고 있다. 본 연구에서는 바이오매스의 가스화를 위하여 3 MWth 급 순환유동 층(CFB) 반응기를 개발하여 운전하였다. 유동층반응기는 순환유동층 반응기와 기포유동층 반응기로 구 성되었으며 타르와 산성가스를 제거하기 위하여 세라믹필터, 급속냉각, 습식스크러버를 사용하였다. 3 MWth 급 바이오매스 가스화기의 최적 운전조건을 도출하기 위하여 equivalence ratio에 따른 영향을 조사하였다
        4,000원
        6.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Silicon carbide(SiC) layer is particularly important tri-isotropic (TRISO) coating layers because it acts as a miniature pressure vessel and a diffusion barrier to gaseous and metallic fission products in the TRISO coated particle. The high temperature deposition of SiC layer normally performed at 1500-1650˚C has a negative effect on the property of IPyC layer by increasing its anisotropy. To investigate the feasibility of lower temperature SiC deposition, the influence of deposition temperature on the property of SiC layer are examined in this study. While the SiC layer coated at 1500˚C obtains nearly stoichiometric composition, the composition of the SiC layer coated at 1300-1400˚C shows discrepancy from stoichiometric ratio(1:1). 3-7μm grain size of SiC layer coated at 1500˚C is decreased to sub-micrometer (< 1μm) -2μm grain size when coated at 1400˚C, and further decreased to nano grain size when coated at 1300-1350˚C. Moreover, the high density of SiC layer (≥3.19g/cm3) which is easily obtained at 1500˚C coating is difficult to achieve at lower temperature owing to nano size pores. the density is remarkably decreased with decreasing SiC deposition temperature.
        4,000원
        7.
        2014.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Wastewater containing heavy metals such as copper (Cu) and nickel (Ni) is harmful to humans and the environment due to its high toxicity. Crystallization in a fluidized bed reactor (FBR) has recently received significant attention for heavy metal removal and recovery. It is necessary to find optimum reaction conditions to enhance crystallization efficacy. In this study, the effects of crystallization reagent and pH were investigated to maximize crystallization efficacy of Cu-S and Ni-S in a FBR. CaS and Na2S·9H2O were used as crystallization reagent, and pH were varied in the range of 1 to 7. Additionally, each optimum crystallization condition for Cu and Ni were sequentially employed in two FBRs for their selective removal from the mixture of Cu and Ni. As major results, the crystallization of Cu was most effective in the range of pH 1-2 for both CaS and Na2S·9H2O reagents. At pH 1, Cu was completely removed within five minutes. Ni showed a superior reactivity with S in Na2S·9H2O compared to that in CaS at pH 7. When applying each optimum crystallization condition sequentially, only Cu was firstly crystallized at pH 1 with CaS, and then, in the second FBR, the residual Ni was completely removed at pH 7 with Na2S·9H2O. Each crystal recovered from two different FBRs was mainly composed of CuxSy and NiS, respectively. Our results revealed that Cu and Ni can be selectively recovered as reusable resources from the mixture by controlling pH and choosing crystallization reagent accordingly.
        4,000원
        8.
        2008.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The properties of pyrolytic carbon (PyC) deposited from C2H2 and a mixture of C2H2/C3H6 on ZrO2 particles in a fluidized bed reactor were studied by adjusting the deposition temperature, reactant concentration, and the total gas flow rate. The effect of the deposition parameters on the properties of PyC was investigated by analyzing the microstructure and density change. The density could be varied from 1.0 g/cm3 to 2.2 g/cm3 by controlling the deposition parameters. The density decreased and the deposition rate increased as the deposition temperature and reactant concentration increased. The PyC density was largely dependent on the deposition rate irrespective of the type of the reactant gas used.
        4,000원
        9.
        2008.06 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        The fluidized bed has been used generally for Industrial process such as chemical reaction process, separation process, incineration and etc. It is very efficient for such application because of equitable contact of each fluidized element with fluid passing through it and maximizing active contact area to adsorb and react from the fluid. This study had focus on application of fluidized bed for air purifier as household appliance and analyzed its performance in comparison to typical fixed media type. As a result, fluidized bed performed in this study had higher removal efficiency for acetaldehyde over two times within initial operation term and had lower pressure drop over 0.7mmAq than that of fixed media type.
        4,200원
        10.
        2008.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        일반적으로 순환유동층 열교환기에서 최적의 운전과 설계에 대한 지식은 아직 잘 알려져 있지 않다. 입자 유동에 관한 기초적 지식이 부족하기 순환유동층 열교환기를 최적 설계하는 데에는 아직 제한적이다. 그러므로 본 연구에서는 순환하는 물속에 고체입자(유리)가 유동하는 수평 원형관에서 압력강하와 마찰계수에 대해 실험적으로 측정한다. 고체입자의 직경은 3 mm와 4 mm를 각각 취급하였고 레이놀즈수의 범위는 10,000에서 45,000이었다. 연구 결과 4 mm 직경의 입자가 3 mm의 입자보다 마찰계수가 더 컸다. 그리고 고체입자의 농도가 낮은 경우에서는 마찰계수는 고체입자의 농도보다 유체속도에 의해서 더 영향이 컸다. 그러나 입자의 농도가 큰 운전조건에서는 고체입자의 농도도 마찰계수에 큰 영향을 주었다.
        4,000원
        13.
        2006.02 구독 인증기관 무료, 개인회원 유료
        The characteristics of fluidized bed catalytic combustion for sludge treatment have been studied in a pilot scale of fluidized bed combustor. 1.0wt% Pt of catalyst supported on the spherical alumina was mixed with the spherical pure alumina as a bed material. Sewage sludge, heating value of which is 3,440 kcal/kg, was used as a waste sample in the experiment. Through the experiments, the various characteristics such as a bed temperature profile and flue gas(CO, SO2) concentration profile were investigated and the catalyst mixing ratio and sample feed rate were applied as experimental parameters. The experimental results showed that bed temperature was maintained more highly and flue gas concentration decreased with the increase of the catalyst mixing ratio, and bed temperature was maintained more highly also and flue gas concentration increased with the increase of the sample feed rate. The combustion efficiency of fluidized bed catalytic combustion of the sludge increased with the increase of the catalyst mixing ratio and sample feed rate and reached more than 96%.
        4,600원
        14.
        2004.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Synthesis gas is a high valued compound as a basic chemicals at various chemical processes. Synthesis gas is mainly produced commercially by a steam reforming process. However, the process is highly endothermic so that the process is very energy-consuming process. Thus, this study was carried out to produce synthesis gas by the partial oxidation of methane to decrease the energy cost. The effects of reaction temperature and flow rate of reactants on the methane conversion, product selectivity, product ratio, and carbon deposition were investigated with 13wt% Ni/MgO catalyst in a fluidized bed reactor. With the fluidized bed reactor, CH4 conversion was 91%, and Hz and CO selectivities were both 98% at 850℃ and total flow rate of 100 mL/min. These values were higher than those of fixed bed reactor. From this result, we found that with the use of the fluidized bed reactor it was possible to avoid the disadvantage of fixed bed reactor (explosion) and increase the productivity of synthesis gas.
        4,000원
        19.
        1994.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        1μ m이하의 텅스텐 분말에 구리를 균일하게 코팅하는 공정을 새로이 개발했다. 구리가 코팅된 μ m이하의 텅스텐 분말을 이용하여 액상소결하였으며, 구리가 균일하게 분포된 W-Cu합금을 얻을 수있었다. 본 연구에서 개발된 방법에 의해 구리의 함유량을 10wt.%이하로 낮추면서도 균일한 W-Cu합금을 얻을 수 있었으며, 특히 코발트를 같은 방식에 의해 첨가하면 구리액상이 형성된 후 급격히 치밀화하여 96% 이상의 상대밀도를 갖는 W-Cu 합금을 제작하는데 성공하였다. 코발트 첨가에 의한 급격한 치밀화의 증가는 텅스텐과 구리액상 사이의 접착성 향상에 기인하는 것으로 밝혀졌다.
        4,000원
        20.
        2018.09 KCI 등재 서비스 종료(열람 제한)
        순환유동층 보일러애시(CFBC ash)는 매년 발생량이 증가하고 있으며, 대부분 활용성이 제한되어 매립, 폐기되고 있는 실정이다. 순환유동층 보일러애시의 화학조성 주성분은 SiO2, CaO, CaSO4로써, 물과 반응하여 시멘트와 유사한 자기수경성을 가지고 있다. 본 연구에서 는 순환유동층 보일러애시의 자기수경성을 활용하여, 폴리머 혼입 보수 모르타르를 개발하기 위한 최적배합을 도출하고자 하였다. 폴리머 혼입 보수 보르타르 개발을 위해 순차적으로 3 Case의 배합을 설정하고 기초 물성을 확인하였다. 그 결과, 순환유동층 보일러애시에 실리카흄 10% 혼입과 폴리머 1.0% 혼입, 팽창재 3.5% 혼입에서 최적의 결과를 얻을 수 있었다.
        1 2 3 4 5