In this study, we investigated and analyzed the impact of changes in driving speed and inter-vehicle distance on users’ perceived tension during autonomous vehicle operation. To this end, a survey experiment was conducted for both urban roads and highways. The results show that the greatest changes in perceived tension occurred in the range of 50–70 Km/h and 50–70 m following distance on urban roads, and in the range of 80–100 Km/he and 60–80 m following distance on highways. Furthermore, modeling user behavioral responses to perceived tension based on changes in speed and following distance revealed that linear models best described the relationship for speed on both urban roads and highways. For the following distance, a quadratic model was the most suitable for urban roads, whereas a logarithmic model best fit the highway data. These findings are expected to contribute to practical operational guidelines for autonomous vehicles by alleviating users’ psychological discomfort and enhancing public acceptance. Future research will extend this study using a driving simulator to examine user responses in more realistic driving environments.
In this study, the shape of the exterior, not the inside of the product, was modified. Various exterior shape change plans were compared and reviewed through injection molding analysis, and among them, the most effective shape for suppressing warpage deformation was derived. The shape of the product was modified to optimize the bending deformation of the cover located at the top of the automobile battery case. The analysis was conducted under a total of three conditions, each of shape A, which is a rectangular parallelepiped shape at the top of the product, and shape B, which is concave on the side of the product. As a result of the study, both shape A and shape B were reduced compared to the amount of bending deformation of the original shape. Among them, shape B2, which showed the largest reduction, decreased by 82.096% from the amount of bending deformation of the original shape.
This study evaluates the structural stability of a hydrogen shut-off valve used in fuel cell electric vehicles (FCEVs) under extreme operating conditions, including high pressure and cryogenic temperatures. Using a one-way Fluid-Structure Interaction (FSI) analysis based on ANSYS CFX and Static Structural, the study simulates thermal and pressure loads on key components. The results show that the maximum equivalent stress occurs in the rod (361.22 MPa), while safety factors for all components remain above 2.11, confirming adequate structural integrity. In order to secure higher structural stability and reduce the weight of parts, attention should be paid to the selection of materials and improving the shape. The findings provide a valuable basis for improving the design reliability and optimization of hydrogen shut-off valves for future automotive applications. The leak tightness and durability tests of the hydrogen shut-off valve under cryogenic conditions verified its structural integrity, confirming its safety even after more than 5.2 million repeated operations.
This study quantitatively analyzed Buzz, Squeak, and Rattle (BSR) noises occurring during automotive operation and identified their root causes. Abnormal noises were initially detected during a first test drive and were classified into BSR types based on data from a Noise Observer system. Case analysis revealed that in the 2020 G model, a squeak noise was caused by friction between solid components due to durability degradation and damage to the suspension bushing. In contrast, the 2022 G model exhibited a rattle noise resulting from insufficient structural gaps. As modern vehicles continue to pursue higher performance, safety, and cabin quietness, the reduction in component gaps has increased the likelihood of BSR occurrences. This study demonstrates the effectiveness of diagnosing the root causes of BSR and confirms its practical value in reducing maintenance time and minimizing misdiagnoses.
This study investigates the effects of various Throttle Position Sensor (TPS) signal anomalies and throttle body defects on automotive acceleration and safety by experimentally reproducing and analyzing eight distinct fault scenarios. The results demonstrate that the Electronic Control Unit (ECU) consistently detects signal anomalies and activates fail-safe modes, limiting throttle response and engine output to maintain automotive control. In all fault conditions, sudden unintended acceleration was effectively prevented, and braking performance remained unaffected. These findings underscore the robustness of the throttle control system against electrical and mechanical defects and offer valuable insights for the design of safer drive-by-wire systems.
In this study, the design of shock tower mounting, a type of shock absorber mounting for four-wheel drive vehicles, was addressed through structural analysis. In the case of existing shock tower mounting components, cracks occurred in the shock tower frame side weld joints, so the maximum stress should be reduced to extend the life of the designed components. Based on this, various design changes were performed on the shock tower mounting components, and the maximum stress generated through structural analysis of each design change model was compared. For the structural analysis, a load of 40,000 N was applied in the axial direction of the shock absorber, and the results were relatively analyzed and compared. As a result of the analysis of the shock tower mounting components through the design change, Case 3, a model that alleviated the stress concentration applied to the body mounting, increased the strength compared to the existing model, and the stress in the shock tower frame side weld joints was reduced by 16.3%.
NVH(Noise, Vibration, and Harshness) characteristics are critical indicators for evaluating automotive quality and diagnosing mechanical issues through abnormal vibrations during driving. Among various components, tires are the only part of the automotive in direct contact with the road, making them a major source of noise and vibration. Tire-related anomalies not only affect ride comfort but can also pose serious safety hazards. This study presents a diagnostic approach that utilizes NVH analysis, wheel balance inspection, and RFV(Radial Force Variation) measurement to identify and repair tire faults. Through case analysis, it was confirmed that abnormal vibrations caused by internal moisture accumulation and structural deformation of tires could be accurately diagnosed and addressed. The proposed method enables early detection of tire-related issues, providing a preventive maintenance strategy and contributing to enhanced automotive safety and reliability.
The casting manufacturing process of aluminum automotive wheels often involves processing various wheel models during stages such as flow forming, machining, packaging, and delivery. Traditionally, separate equipment or production lines were required for each model, which led to higher facility investment costs and increased labor costs for classification. However, the implementation of machine learning-based model classification technology has made it possible to automatically and accurately distinguish between different wheel models, resulting in significant cost savings and enhanced production efficiency. Additionally, this approach helps prevent product mix-ups during the final inspection process and allows for the quick and precise identification of wheel models during packaging and delivery, reducing shipping errors and improving customer satisfaction. Despite these benefits, the high cost of machine learning equipment presents a challenge for small and medium-sized enterprises(SMEs) to adopt such technologies. Therefore, this paper analyzes the characteristics of existing machine learning architectures applicable to the automotive wheel manufacturing process and proposes a custom CNN(Convolutional Neural Network) that can be used efficiently and cost-effectively.
본 연구는 우즈베키스탄 자동차 산업 발전에 있어 리버스 엔지니어링 의 역할을 탐구하며, 특히 노나카와 타케우치의 지식 창출 모델(SECI Model)과의 통합에 중점을 두고 있다. 우즈베키스탄이 경쟁력 있는 국내 산업을 구축하고자 노력함에 따라, 리버스 엔지니어링은 해외 기술의 습 득, 적용, 그리고 국산화를 가능하게 했다. 본 연구는 정성적 사례 연구 접근법을 활용하여 기업 보고서, 정책 문서, 학술 문헌을 바탕으로 1996 년부터 2024년까지의 발전 상황을 분석한다. 연구 결과에 따르면 리버스 엔지니어링은 지식 이전과 혁신을 지원해 왔지만, 제한된 R&D 역량, 수 입 부품 의존도, 그리고 취약한 지식재산권 보호 등의 과제가 여전히 남 아 있다. 이러한 장벽을 극복하기 위해 본 연구는 전략적 정책, 국내 혁 신에 대한 투자 확대, 그리고 AI 기반 설계 프로세스 도입을 권고한다.
The blocked force from the electric vehicle compressor is transmitted through the mount to the body side, serving as a primary source of body vibration during air conditioner operation at idle. Accordingly, a method is required during the compressor development stage to quantitatively evaluate the blocked force and analyze its influence for each transmission path. In this study, the blocked force at the outlet of an electric compressor was measured, and a test model was constructed to predict the response of the vehicle body using the Frequency-Based Substructuring(FBS) method. The 6-DOF dynamic stiffness of the bushing up to 500 Hz, not measurable with the elastomer, was successfully obtained using the inverse substructuring(IS) method. Finally, the proposed method was validated by the close match between predicted and measured body vibrations for both conventional and low dynamic stiffness bushings.
In this study, a numerical analysis study on the heat transfer characteristics according to the opening and closing of the hydrogen shut-off valve was performed, and the temperature distribution of the key components of the hydrogen shut-off valve was predicted through the result. The ANSYS CFX program was used to predict the heat transfer characteristics of the hydrogen shut-off valve. When the hydrogen shut-off valve was open, the average temperature of the O-ring, which prevents hydrogen leak inside the solenoid valve, was approximately -40℃, and the plunger showed a maximum of -40℃ and a minimum of -110℃. When the hydrogen shut-off valve was completely closed, the O-ring showed approximately 24.82℃ and the plunger showed approximately 24.71℃, which were almost at room temperature.
In four-wheel-drive vehicle, improving traction with the road surface enhances the vehicle's ability to respond to various driving conditions, increasing its overall versatility. Consequently, various studies have been conducted on four-wheel-drive vehicles that support torque distribution through electronic control. The driving unit that operates the transfer case assists in smooth torque distribution by providing high torque. Therefore, this study developed a reduction mechanism by vertically arranging a planetary gear set in the driving unit to increase the reduction ratio. To achieve this, a common ring gear with 52 teeth was used, and the design included a first-stage planetary gear with a sun gear having 18 teeth, a planet gear with 17 teeth, a second-stage sun gear with 12 teeth, and a planet gear with 20 teeth. The corresponding tooth profiles and structures were also designed. Based on this, a transfer case drive reduction module was developed, which improved torque performance: the first-stage planetary gear system provides 4.23 kgf·m of torque, and the second-stage planetary gear system achieves a final torque of 5.98 kgf·m
Recently, automotive are used not only as a means of transportation, but also as a private and leisure spaces. In order to secure competitiveness in the automobile market, we must improve durability and noise/vibration technologies. The driver wants to keep quiet even if the car is used for a long time. The types of noise and vibration generated by the automotive can be divided into NVH and BSR. NVH should be reduced because it is caused by mechanical defects and aging. In this study, it was possible to accurately analyze the cause of noise and vibration, also it could identify the location, and repair that. In the future, research of an abnormal and vibrations such as NVH and BSR in automotive is needed to clearly identify.
Motorcycles are becoming a major means of transportation in the delivery industry because of their mobility and economic feasibility, and their use is increasing with the spread of non-face-to-face culture. However, owing to the absence of a systematic maintenance and inspection system, illegal modifications, and a lack of safety education, the possibility of accidents is increasing, and social problems are intensifying. To address this issue, we aim to find ways to improve motorcycle safety. Problems were identified by registering motorcycles, driver crashes, and surveys of the current status of laws and systems. Subsequently, a questionnaire was administered to assess the actual conditions and perceptions regarding motorcycles. Finally, to analyze the driving characteristics of delivery motorcycles, traffic safety education was conducted for new delivery riders, and the driving characteristics were analyzed by collecting driving record data. In this study, a plan to enhance the license system, education, insurance, and educational programs is proposed to strengthen motorcycle safety. The licensing system needs to be elevated by age and classified by displacement, and delivery riders can improve their driving skills through mandatory traffic safety education. The insurance sector should introduce a system that discounts insurance premiums upon completion of training. Additionally, it is essential to prepare a systematic education program, including obstacle avoidance and simulation-based learning, by reflecting on the analysis results of road environments and driving data. In this study, insensitivity to safety, insufficient management systems, and lack of education and publicity were identified as causes of motorcycle driver crashes. It was confirmed that most types of dangerous driving were improved through traffic safety education. However, some limitations were observed, such as an increase in the right-hand rotation over time during sudden turns. Future research is needed to enhance laws, systems, and driver safety by analyzing driving characteristics in a broader context based on actual driving records and images.
This study collected video footage of accident-risk scenarios on actual roads using automobiles and motorcycles. A total of 191,500 km was driven with three vehicles and one motorcycle, capturing 6,550 near-miss accident videos. The footage was analyzed and categorized based on the 27 parameters of the iGLAD(Initiative for the Global Harmonization of Accident Data) accident categories. Parameters difficult to classify under iGLAD were localized to fit domestic conditions, and further analysis identified areas needing optimization. The categorized data was organized into a web-based database platform, providing statistical analysis and search functions for scenario development. Future use of this data will support the creation of safety evaluation scenarios for autonomous vehicles, enhancing traffic accident investigation and analysis systems. Expanding the database to include data from secondary roads and parking areas is expected to increase its applicability and value.
Vehicle body damage caused by accidents often presents unique conditions, making it difficult to acquire practical maintenance skills through textbook theory alone. To address this issue, this study explores body repair techniques, including the complete replacement, partial replacement, and modification of side quarter panels, with a focus on preventing depreciation, reducing environmental pollution, and maximizing vehicle owner satisfaction. In particular, the study highlights the need for a standardized body repair manual for vehicles with severe damage to the rear side members caused by rear-end collisions. This manual aims to minimize repair discrepancies due to differences in operator skill levels and proposes a solution to prevent the depreciation of vehicle market value after repairs. The study’s objective is to standardize the repair and replacement of rear side members in vehicle repair shops, ensuring consistent repair quality for consumers and contributing to the preservation of vehicle value.
Automotive technology has developed rapidly and is becoming the intensive of cutting edge technology. For this reason, Automotive are used not only as a means of transportation, but also as a private and leisure spaces. The driver wants to keep quiet even if the car is used for a long time. NVH should be reduced because it is caused by mechanical defects and aging. In this study, it was presented that a seven-step procedure for failure diagnosis and repair to reduce noise/vibration. NVH was diagnosed by comparing the result of the rotator order tracking analysis with the problem frequency. It was possible to accurately analyze the cause of noise and vibration, also it coud identify the location, and repair that.
Along with the increase in the number of vehicles in circulation, the indoor air quality in automobiles is attracting attention as another possible health concern. However compared to data regarding indoor air quality in other spaces, there are insufficient data on indoor air quality in automobiles. In addition, there is no standard for the evaluation method. In this study, the change in the concentration of particulate matter in the vehicle while driving under real road conditions was analyzed in order to use it as basic data for a method to evaluate vehicle indoor air quality. Through the selection of measurement target materials and test vehicles and the preparation of test methodologies, evaluation was performed on vehicle, route, and HVAC modes. The concentration of particulate matter in the vehicle was the lowest in the RC (In-vehicle recirculation) condition, and it was confirmed that it decreased with time. The highest average concentration was confirmed in the OA (Outside air ventilation) condition, and the concentration change according to the changing HVAC mode was observed in the Auto condition. The concentration of pollutants inside the vehicle showed a significant correlation with factors such as season, external concentration, and HVAC conditions, along with a weak correlation to powertrain type. The results of this study can be used as basic data for developing methods for evaluating vehicle interior air quality in future work.
자동차 시장의 급속한 발전과 소비자 수요의 다양화로 인해, 자동차의 미적 외관과 성능뿐만 아니라 실내 공간 디자인과 소비자 감성적 만족에 대한 관심이 부각되고 있다. 최근 글로벌 자동차 기업들의 컨셉카 경향을 볼 때, 실내 공간은 단순한 이동 수단을 넘어 사용자들의 경험을 중시하는 생활 공간으로 진화할 것으로 보인다. 이에 본 연구는 지속가능성 트렌드를 반영하여, 사용자들이 운전 외에도 다양한 활동을 즐길 수 있도록 돕고, 감성적 만족감을 제공할 수 있는 자동차 CMF 디자인을 텍스타일 중심으로 제안하고자 하였다. 연구 결과는 다음과 같다. 자연의 감성을 현대적으로 재해석한 디자인 테마를 제안하고, 하이킹과 캠핑을 즐기며 유연한 삶을 추구하는 소비자층을 타겟으로 하였다. CMF의 컬러는 자연에서 추출한 색감을 기반으로 하였으며, 소재는 지속가능성과 연결되면서, 기능성과 미적인 표현성에 초점을 맞추었다. 마감의 경우, 다양한 가공 기술 활용을 통해 기능적이면서 조형적 가치를 향상시킬 수 있도록 하였다. 시트의 텍스타일디자인은 세 가지로 제안되었으며, 실내 공간의 편안함과 활용성을 극대화하기 위해 홈 인테리어의 가구 및 오브제 디자인에서 영감을 받은 그래픽 요소를 포함하여, 모빌리티 실내 환경의 감성적 만족을 높일 수 있는 방향으로 접근하였다. 연구 결과는 미래 모빌리티 실내 공간 디자인 연구의 기초가 될 것이며, 향후 자율주행 자동차 실내 공간의 CMF 요소에 활용할 수 있을 것으로 기대한다.