This study developed and tested a pilot-scale biowindow for simultaneous removal of odor and methane from landfills. The test was conducted in a sanitary landfill site during the summer season (July and August). The average temperature inside the biowindow was 5°C higher than the average air temperature, rising to 37–48oC when the outdoor temperature was very hot. The complex odor removal rate (based on the dilution-to-threshold value) in the biowindow during the summer was 91.3- 98.8% (with an average of 96.2±4.2%). The average concentration of hydrogen sulfide was 3,024.9±805.8 ppb, and its concentration was found to be the highest among 22 odorous compounds. The removal efficiencies of hydrogen sulfide and methyl mercaptan were 89.1% and 83.2%, respectively. The removal of dimethyl sulfide was 17.7%, and no ammonia removal was observed. Additionally, the removal efficiencies of toluene and xylene were 85.2% and 72.5%, respectively. Although the initial methane removal was low (24.9%), the methane removal performance improved to 53.7–75.6% after the 11th day of operation. These results demonstrate that the odor and methane removal performance of the pilot-scale biowindow was relatively stable even when the internal temperature of the biowindow rose above 40oC in the summer. Since the main microorganisms responsible for decomposing odor and methane are replaced by thermotolerant or thermophilic microorganisms, and high community diversity is maintained, odor and methane in the biowindow could be stably removed even under high-temperature conditions.
This study evaluates the potential of various coagulants to enhance the efficiency of total phosphorus removal facilities in a sewage treatment plant. After analyzing the existing water quality conditions of the sewage treatment plant, the coagulant of poly aluminium chloride was experimentally applied to measure its effectiveness. In this process, the use of poly aluminium chloride and polymers in various ratios was explored to identify the optimal combination of coagulants. The experimental results showed that the a coagulants combination demonstrated higher treatment efficiency compared to exclusive use of large amounts of poly aluminium chloride methods. Particularly, the appropriate combination of poly aluminium chloride and polymers played a significant role. The optimal coagulant combination derived from the experiments was applied in a micro flotation method of real sewage treatment plant to evaluate its effectiveness. This study presents a new methodology that can contribute to enhancing the efficiency of sewage treatment processes and reducing environmental pollution. This research is expected to make an important contribution to improving to phosphorus remove efficiency of similar wastewater treatment plant and reducing the ecological impact from using coagulants in the future.
해당 연구는 산업 폐수에서 염료를 효율적으로 제거하기 위한 고급 박막 나노복합체(TFN) 기반 나노여과막을 개 발하여 효과적인 폐수 처리 방법을 제시합니다. 최근 연구의 동향을 보면, 나노카본, 실리카 나노스피어, 금속-유기 프레임워 크(MOF) 및 MoS2와 같은 혁신적인 재료를 포함하는 TFN 막의 제조에 중점을 둡니다. 주요 목표는 염료 제거 효율을 향상 시키고 오염 방지 특성을 개선하며 염료/염 분리에 대한 높은 선택성을 유지하는 것입니다. 이 논문은 넓은 표면적, 기계적 견고성 및 특정 오염 물질 상호 작용 능력을 포함하여 이러한 나노 재료의 뚜렷한 이점을 활용하여 현재 나노여과 기술의 제 한을 극복하고 물 처리 문제에 대한 지속 가능한 솔루션을 제공하는 것을 목표로 합니다.
PURPOSES : Recently, air pollution due to fine particulate matter has been increasing in Korea. Nitrogen oxides (NOx) are particulate matter precursors significantly contributing to air pollution. Increasing efforts have been dedicated to NOx removal from air, since it is particularly harmful. Application of titanium dioxide (TiO2) for concrete road structures is a suitable alternative to remove NOx. As the photocatalytic reaction of TiO2 is the mechanism that eliminates NOx, the ultraviolet rays in sunlight and TiO2 in existing concrete structures need to be contacted for the reaction process. For the application of vertical concrete road structures such as retaining walls, side ditches, and barriers, a pressurized TiO2 fixation method has been developed considering the pressure and pressurization time. In this study, longterm serviceability and repeatability were investigated on concrete specimens applying the dynamic pressurized TiO2 fixation method. Additionally, the environmental hazards of nitrate adsorbed on TiO2 particles were evaluated. METHODS : Concrete specimens to simulate roadside vertical concrete structures were manufactured and used to evaluate the long-term serviceability and repeatability of the dynamic pressurized TiO2 fixation method. The NOx removal efficiency was measured using NOx evaluation equipment based on ISO 22197-1. In addition, the nitrate concentration was measured using a comprehensive water quality analyzer for evaluating environmental hazards. RESULTS : As the experiment to evaluate the NOx removal efficiency of the dynamic pressurized TiO2 fixation method progressed from one to seven cycles, the nitrate concentration increased from 2.35 mg/L to 3.06 mg/L, and the NOx removal efficiency decreased from 53% to 25%. After seven cycles of NOx removal efficiency evaluation, the average nitrate concentration was 3.06 mg/L. The nitrate concentration collected immediately after the NOx removal efficiency test for each cycle was in the range of 2.51 to 2.57 mg/L. By contrast, it was confirmed that the nitrate concentration was lowered to approximately 2.1 mg/L when the surface was washed with water. CONCLUSIONS : The NOx removal efficiency was maintained at over 25% even after seven cycles of NOx removal efficiency evaluation, securing long-term serviceability. In addition, the harmful effects on the environment and human health are insignificant, since the nitrate concentration was less than 10 mg/L, in accordance with domestic and foreign standards. Practical applicability of the pressurized TiO2 fixation method was established by evaluating the long-term serviceability, repeatability, and environmental hazards.
항생제는 과도한 사용으로 인해 폐수뿐만 아니라 다양한 수원에서 발견되는 새로운 오염 물질 중 하나입니다. 수 중 항생제 오염 물질을 처리하기 위한 고도 산화 공정, 생물학적 처리 등 다양한 기술이 있습니다. 이 두 가지 공정은 비효율 적이며, 부산물의 생성은 이 공정을 더욱 복잡하게 만듭니다. 오염 물질을 제거하기 위한 또 다른 대안으로 막 기술이 있습니 다. 항생제와 내성 유전자의 제거를 개선하기 위해 막 생물 반응기는 NaClO와 탄소 물질로 변형됩니다. 풍부한 반응성 종의 생성은 항생제의 내성 유전자에 대해 활성입니다.
총담관결석의 치료는 내시경역행담췌관조영술을 시행하여 결석을 제거하는 것이 표준적인 방법이며 내시경유두부 괄약근절개술 및 내시경유두부풍선확장술을 시행한 후 바스켓 및 풍선도관, 기계석 쇄석술 등의 여러가지 방법을 사용하여 그 성공률은 90% 이상으로 알려져 있다. 그러나 일부 거대담석이나 담도협착이 동반된 경우 등에서는 담석의 제거에 실패하는 경우가 있다. 본 저자들은 방사선 비투과성 담석에 대해서 일반적인 담석제거를 위한 방법을 사용한 후에도 담석제거에 실패하고 기계적 쇄석술을 시행하던 중 바스켓의 철선이 끊어지면서 담석과 함께 총담관 내에 잔류하게 된 환자에서 체외충격파 쇄석술을 시행하여 담석을 파쇄한 후 담석의 제거에 성공하였던 증례를 문헌고찰과 함께 보고한다.
Recently, the demand for shape memory alloys in the biomedical industry is increasing. Nitinol alloy, which accounts for most of the shape memory alloy market, occupies most of the biomedical field. Nitinol for biomaterials requires a clean surface without sub-micron surface integrity and surface defects in order to be used more safely in a living body. Among them, new technologies such as polishing using MR fluid are being studied, but there is a disadvantage in that it takes a long time for processing due to a low material removal rate. In this study, material removal studies were conducted for effective polishing, and excellent polishing properties of MR fluid were confirmed.
At Pyropia farms, organic acid treatments have enhanced productivity and quality by removing pest algae (such as Ulva spp. and diatoms) and reducing the occurrence of diseases. Ulva spp. attaches to the Pyropia nets competing for inorganic nutrients & space and diminishing productivity. Additionally, the presence of attached contaminants (such as diatoms and middy particles) on the Pyropia nets negatively affects the quality of Pyropia. This study investigated the effects of removing Ulva linza and washing the Pyropia yezoensis nets using an activating treatment agent (organic acid and highly saline solution) with an air bubble device. The results of measuring the dead cell ratios after treatment under different conditions showed that the dead cell ratio of U. linza did not significantly increase when the air bubble device combined the activating treatment agent with the activating treatment agent alone. When washing the P. yezoensis nets, the air bubble device was about 19-37% more effective than the activating treatment agent alone. The findings of this study suggest that the air bubble device enhances the efficacy of the activating treatment agent, resulting in the effective cleaning of the Pyropia nets.
This study presents a novel method for addressing the issue of high-concentration contaminants (ammonium, phosphate, antibiotics) in leachate arising from decomposing livestock carcasses. Antibiotics, developed to eliminate microorganisms, often have low biodegradability and can persist in the ecosystem. This research proposes design elements to prevent contamination spread from carcass burial sites. The adsorbents used were low-grade charcoal (an industrial by-product), Alum-based Adsorbent (ABA), and Zeolite, a natural substance. These effectively removed the main leachate contaminants: low-grade charcoal for antibiotics (initial concentration 1.05 mg/L, removal rate 73.4%), ABA for phosphate (initial concentration 2.53 mg/L, removal rate 99.9%), and zeolite for ammonium (initial concentration 38.92 mg/L, removal rate 100.0%). The optimal mix ratio for purifying leachate is 1:1:10 of low-grade charcoal, ABA, and zeolite. The average adsorbent usage per burial site was 1,800 kg, costing KRW 2,000,000 per ton. The cost for the minimum leachate volume (about 12.4 m3) per site is KRW 2,880,000, and for the maximum volume (about 19.7 m3) is KRW 4,620,000. These findings contribute to resolving issues related to livestock carcass burial sites and suggest post-management strategies by advocating for the effective use of adsorbents in leachate purification.
The binary oxide adsorbent using Fe and Mn (Fe-Mn) has been prepared by precipitation method to enhance the removal of phosphate. Different amounts of chitosan, a natural organic polymer, were used during preparation of Fe-Mn as a stabilizer to protect an aggregation of Fe-Mn particles. The optimal amount of chitosan has been determined considering the separation of the Fe-Mn particles by gravity from solution and highest removal efficiency of phosphate (Fe-Mn10). The application of Fe-Mn10 increased removal efficiency at least 15% compared to bare Fe-Mn. According to the Langmuir isotherm model, the maximum uptake (qm) and affinity coefficient (b) were calculated to be 184 and 240 mg/g, and 4.28 and 7.30 L/mg for Fe-Mn and Fe-Mn10, respectively, indicating 30% and 70% increase. The effect of pH showed that the removal efficiency of phosphate was decrease with increase of pH regardless of type of adsorbent. The enhanced removal efficiency for Fe-Mn10 was maintained in entire range of pH. In the kinetics, both adsorbents obtained 70% removal efficiency within 5 min and 90% removal efficiency was achieved at 1 h. Pseudo second order (PSO) kinetic model showed higher correlation of determination (R2), suggesting chemisorption was the primary phosphate adsorption for both Fe-Mn and Fe-Mn10.
Cyanobacterial harmful algal blooms (Cyano-HABs) are an international environmental problem that negatively affects the ecosystem as well as the safety of water resources by discharging cyanotoxins. In particular, the discharge of microcystins (MCs), a highly toxic substance, has been studied most actively, and various water treatment methods have been proposed for this purpose. In this paper, we reviewed adsorption technology, which is recognized as the most feasible, economical, and efficient method among suggested treatment methods for removing MCs. Activated carbons (AC) are widely used adsorbents for MCs removal, and excellent MCs adsorption performance has been reported. Research on alternative adsorption materials for AC such as biochar and biosorbents has been conducted, however, their performance was lower compared to activated carbon. The impacts of adsorbent properties (characteristics of pore surface chemistry) and environmental factors (solution pH, temperature, natural organic matter, and ionic strength) on the MCs adsorption performance were also discussed. In addition, toward effective control of MCs, the possibility of the direct removal of harmful cyanobacteria as well as the removal of dissolved MCs using adsorption strategy was examined. However, to fully utilize the adsorption for the removal of MCs, the application and optimization under actual environmental conditions are still required, thereby meeting the environmental and economic standards. From this study, crucial insights could be provided for the development and selection of effective adsorbent and subsequent adsorption processes for the removal of MCs from water resources.