In this study, a two-stage electrostatic precipitator (ESP) was developed using a novel automatic dry cleaning device to reduce the ultrafine particles in subway stations. Collection efficiency was evaluated with a pilot scale ESP (1.2m× 1.2m) and the scale of the test duct was half of the subway air handling unit. The maximum collection efficiency for 0.3 μm particles was 96.9%. In addition, we studied a method of automatic dry cleaning for maintenance of the ESP. The cleaning efficiency was analyzed according to the cleaning flow rate for each particle loading amount to achieve a recovery rate over 90%. In addition, we derived the equation to estimate the reduction in collection efficiency according to the particle loading amount. It was confirmed that the performance of the contaminated ESP was restored to the initial state by the automatic dry cleaning in this study and that the electrical energy consumption was 5 times lower compared to utilizing conventional water cleaning.
본 연구에서는 강화되는 황산화물 및 입자상물질의 배출규제를 만족시키기 위한 후처리장치로 습식전기집진기에 대한 실험적 연구를 수행하였다. 실험을 위해 선박용 중유(HFO, 황함유량 약 2.1%)를 연료로 사용하는 선박용 4행정 디젤엔진(STX-MAN B&W)을 활용 하였으며, 연돌에 설치된 습식전기집진기 입/출구에서 측정을 실시하였다. 미세먼지 측정을 위해서는 광학식 계측기(OPA-102) 및 중량농 도측정방식(Method 5 Isokinetic Train)을 이용하였으며, 황산화물 계측을 위해서는 FT-IR(DX-4000)을 사용하였다. 엔진부하는 50%, 75%, 100%로 변화시키면서 실험을 실시하였다. 실험 결과로, 엔진부하가 50%에서 100%로 변화함에 따라 미세먼지 저감 효율은 모든 부하 조건에서 94~98% 정도의 높은 저감 효율을 나타내었다. 추가적으로 습식전기집진기 퀜칭존에서 배기가스의 온도를 낮추는 과정 중 세정액에 의한 이산화황(SO2) 저감을 확인할 수 있었으며, 저감율은 엔진부하에 따라 55%~81%로 확인되었다.
전 세계 90 %의 인구가 WHO의 연평균 미세먼지 노출 기준(10 ㎍/㎥)을 초과한 공기를 흡입하고 있다. 전 세계적으로 육상뿐 만 아니라 해양에서 발생하는 질소산화물에 대한 규제를 통해 2차 오염물질, 초미세먼지 저감에 대해 노력하고 있으며 국내에서는 선박에서 미세먼지 발생의 주요한 원인인 황 함유량 저감과 환경친화적 선박의 개발 및 보급 등을 통해 깨끗한 해양환경 조성을 위한 노력을 하고 있다. 디젤엔진 유해 배출가스 저감을 위한 기술 중 압력 손실이 적고 높은 집진 효율 및 NOx의 제거와 유지 관리의 장점이 많은 전기 집진기의 수요와 중요성이 증가하고 있다. 본 연구는 총톤수 999톤급 선박의 2,427 kW 선박용 디젤엔진의 미세먼지 저감을 목적으로 개발된 전기 집진기를 예지보전단계에서 고장모드영향분석을 통해 장비 품질을 높여 선박 내에서의 내구연한을 높이고자 위험 우선순위 도출하였다. 위험 우선순위는 고장모드 241(poor dust capture efficiency)이 RPN 180으로 가장 높았다. Collecting electrode 에서 가장 많은 고위험 고장모드를 검출하여 집중관리 부품으로 관리해야 할 필요가 있었으며 원인으로 진동과 핀 풀림으로 인한 유 격 불량이 가장 많이 검출되었다. 핀 풀림 역시 근본적으로는 선체 또는 장비에서 발생하는 진동이 원인이 되어 발생할 수 있는 사항이기 때문에 핀 풀림이 발생하는 개소에 보완이 필요하겠다.
In this study, the flow by impingement at water dust collector with movable nozzle was analyzed by computational fluid technique. The velocity and vorticity of the dust collector were compared by positioning the nozzle to up and down. Also, the mean velocity were compared through three specific locations that were the diffuser inlet, movable nozzle surface and dust collector outlet. It can be checked that the vorticity and velocity magnitude are verified by the fluid solver of Fluent. As the result of this study, the movable nozzle located at 4cm down from initial position of the nozzle shows the great characteristics of vorticity and velocity distribution for dust collection.
A centrifugal cyclone dust collecting apparatus includes a hydro cyclone dust collecting apparatus for separating solid or liquid using liquid or suspension as a medium. In this study, the formation mechanism and improvement of air core and inner air layer were confirmed through Particle Image Velocimetry. These results showed that the modified experimental model was designed in the conventional method suitable for the separation of juvenile fish and eggs. The inlet speed of the multi-stage hydrocyclone dust collector, which can increase the inlet velocity and minimize floatage in the turbulence chamber, was increased from 0.15 to 0.30 m/s. As a result, the air core was stably formed, the inner air layer was increased with increasing speed. In addition, the dust collecting efficiency of egg and juvenile fish was 97.8% on average, It can infer that this system confirmed the ability to efficiently collect particles of 40 μm or more.
This study is aimed to design the mechanical gascyclone precipitator with an outstanding collection efficiency as one of ways to reduce exhaust gas of small-scale vessels. It estimated fine particles generated from diesel engines which has become one of the biggest environmental issues currently. Specifically, it quantitatively analyzed the flowing process from the cyclone gas exit; a duct via part to the collecting part of Cylindrical lower using DPIV (Digital Particle Image Velocimetry). Since the gas inlet height part became wider the previous theoretical dimensions, internal fluid characteristics of cyclone where the speed of internal swirl had been slow were investigated by temporary streamline of fine particles at 14-20 ㎛. The results showed that collecting efficiency was three times higher than the conical type utilized previously. In addition, this study supplemented imprecision problems from the previous theoretical equation and CFD interpretation with an experimental method. It also provided a basic data to design the cyclone precipitator by size of diesel engines for vessels.
The main purpose of this paper was to analyze the removal characteristics of gas/particulate phase pollutants for the present system. Experimentally, we performed to estimate the pressure drop and air pollution removal efficiency with physical variables such as stage number, tube velocity, tube diameter, water spray (NH4OH), and so on. It was concluded that the pressure drop was shown below 111 mmH2O lower than that of the existing scrubber (centrifugal spray chamber, over 200 mmAq) at inlet velocity 3.46 m/s and 5 stage. The particular removal efficiency of this system was to be significantly higher at 99.8% in comparison with that of the existing scrubber for 5 stage, inlet velocity 3.46 m/s and NH4OH (aq) 300 mL/min. It was estimated that the removal efficiencies of SO2 and NO2 were 80% and 70% at system inlet velocity 2.07 m/s and NH4OH (aq) 300 mL/min respectively. Additionally, the present collection system was to be considered as an effective compact system for simultaneous removal of air pollutants (gas/particulate) due to much higher removal efficiency and appropriate pressure drop without a demister.
A single-stage electrostatic precipitator (ESP) was evaluated in terms of its performance in removing dust in subway tunnels. A wire-to-plate type ESP was tested in a small-scale wind tunnel. The effects of wire-to-wire spacing (2040 mm) and the material connecting wire-to-wire on the performance of ESP were investigated, with varying applied voltage and airflow velocity. A narrower wire-to-wire spacing showed higher collection efficiency at the same applied voltage. Lower electrical resistivity of material connecting wire to wire was more effective. Ozone generation in subway tunnel applications was insignificant.
In this study, we numerically analyzed flow and particle transport near the electrostatic precipitator in the tunnel according to train runs. When there was no train running, flow field was formed by a precipitator. Flow emitted from precipitator blocks the path along the tunnel, and therefore most contaminated air passes through the precipitator and can be cleaned. On the other hand, flow pattern during the train run was affected by train induced wind. A strong straight flow was generated at the front of train, and back flow was formed in the opposite line. When a train runs upward only (train start from suction section to blow section), the subway train transports contaminated particles along the tunnel. For downward train runs only case, the cleaned air reentered the contaminated section with train wind. Both train runs case showed combined flow and particle concentration pattern of both single train runs.
The main object of this study is to investigate the collection characteristics of an electro-static multi-staged impaction system, experimentally. The experiment is carried out to analyze the characteristics of pressure drop and collection efficiency for the present system with the experimental parameters such as the inlet velocity, stage number, applied voltage and shape of discharge electrode, etc. In results, the pressure drop is shown below 148 mmH2O lower than that of the conventional bag filter at inlet velocity 3.46 m/s and 5 stage. For 5 stage , the collection efficiencies are to be 97.4, 99.0% with the applied voltage 0 kV at the inlet velocity 2.07, 3.46 m/s, while 98.4, 99.9% with 40 kV of a sharp edge discharge electrode. Additionally, the present system is to be considered as an effective compact system for a removal of particulate pollutants from marine diesel engines due to much higher collection efficiency and appropriate pressure drop.
The main object of this study is to investigate the collection characteristics of wet-type rotating porous disk system experimentally. The experiment is carried out to analyze the pressure drop and collection efficiency for the present system with the experimental parameters such as system inlet velocity, stage number, tube diameter, inlet concentration, etc. In results, for the present system, at 5 stage and υin=1.8 m/s, the pressure drop becomes significantly lower as 64 mmH2O in comparison with that of the conventional wet type scrubber (Venturi scrubber, over 250 mmH2O). The collection efficiencies increase with higher inlet velocity showing 92, 95.7, 98.4%, while SO2 removal efficiencies decrease with increment of inlet velocity as 80, 65, 50% at υin=1.08, 1.44, 1.8 m/s and tube diameter Dt=10 mm, respectively. The present system is to be considered as an effective compact system for a simultaneous removal of particle/gas phase pollutants from marine diesel engines.
In this study, the changes in collection efficiencies due to the time changes of activated carbons were ascertained, and in order to identify the magnitude of adsorption, the before-use and after-use iodine adsorption values were analyzed. In addition, as a result of examining the characteristics of continuous process and non-continuous process and as a result of investigating whether the emission standards would be maintained, the continuous process and printing facilities were seen as not being able to maintain the emission standards. Also were found, in the case of non-continuous process,–taking into consideration the special nature of the job –for 4Ø palletized charcoal, a collection efficiency near 50% was shown even after 96 hours. Also, when the inlet concentration was about 300ppm, it is thought that the emission standards would be maintained if the activated carbons are replaced within at least 96 hours in the case of 4Ø palletized charcoal and the use was deemed pointless in the case of carbon. The results of this study are expected to provide assistance in selecting replacement periods for activated carbons and in selecting absorbents at the project sites, and are expected to be of significant help in the selection of precipitators that can collect total hydrocarbons for compliance of the emission standards.
In this study, the odor causing in the under-fired charbroiling restaurant was reported in literature investigation,pilot test and field experimental verification. The charbroiling restaurant causes odor complaints of Neighbors soefficient reduction method is requested. Acetaldehyde, ammonia, sulfur compound and the oil mist of white smokeare found to cause odor from the charbroiling restaurant. Pilot test results show that in the removal efficiency ofodor, Electrostatic Precipitation was 67.4%, absorption was 81.2%, adsorption was 74.2% and the ElectrostaticPrecipitation & Adsorption the hybrid system with 85.7% respectively. In the same condition of the hybrid system(Electrostatic Precipitation & Adsorption), the odor removal efficiency were higher when the design parameterssuch as the discharge voltage and current were high. The process efficiency were higher when as the implanterpole was cylindrical. However, the process efficiency rapidly reduced due to the contamination of the processcomponent or material, as the operating time of the equipment is increased. Therefore, fixed maintenance and repairof the equipment is found to be are very important, for long term operation. Therefore, as the experimental resultof this study, applying hybrid system removed odors caused in under-fired charbroiling restaurant which areunregulated, is more effective device that settle civil complaints and preserve environment.
The main object of this study was to investigate the collection characteristics of wet-type cyclone with wall cavity. The experiment was executed to analyze the characteristics of pressure drop and collection efficiency for the present system with the experimental parameters such as water spray, water spray type, inlet velocity etc. In results, for the present system of wet-type, the pressure drop represented 35 mmH2O, while in dry-type 33 mmH2O showing lower 6% at vin=21 m/s. In case of vin=21 m/s and water spray 200 mL/min, the collection efficiency of the present system became significantly higher as 96.8% comparing to that of the conventional wet-type scrubber. Additionally, for 200 mL/min, SO2 removal efficiencies decreased with the increment of inlet velocity representing 75.0, 62.5, 50.0%, at vin=6, 9, 12 m/s, respectively.
Particle collection efficiency and air cleaning capacity were tested for the two-stage electrostatic precipitator for use in indoor air cleaning systems. A wire-plate type ionizer was used as a particle charger and a dielectric film consisted of polypropylene (or polyethylene) coated metals and zigzagged metal electrodes was used as a particle collector in the electrostatic precipitator. Both particle collection efficiency and air cleaning capacity increased as increasing the applied voltage on the charger and the collector, and furthermore, as increasing the collector film width (i.e. collection area). Air cleaning capacities estimated by the product of particle collection efficiency and air flow rate were quite well consistent with the experimental ones with a proportional constant of 0.964. Ozone concentrations emitted from the charger at the applied voltages of 5.0 and 5.2 kV were less than 0.05 ppm, indoor ozone standards of UL 867-2002, KS C 9314 and SPS-KACA002-132. For the air flow rate of 11.7 m3/min, the applied floor area of 48.2 m2 could be obtained when 5.2 kV and 6.0 kV were applied on the ionizer and the collector, respectively and the collector of two 15 mm polyethylene dielectric films was used.
In recent models of semiconductor manufacturing clean rooms, air washers are used to remove airborne gaseous contaminants such as NH3, SOx and organic gases introduced from outdoor air into clean room. Meanwhile, there is a large quantity of exhaust air produced from clean room. It is desirable to recover heat from exhaust air and use it to reheat outdoor air. In the present study, an experiment was conducted to investigate heat recovery, particle collection, and gas removal in a heat recovery type air washer system for semiconductor manufacturing clean rooms.
Numerical analysis was conducted to characterize the particle charging quantities in the charging cell of a 2-stage parallel-plate electrostatic precipitator with respect to particle size. The numerical method took into consideration of particle charging rate equations and particle equations of motion, allowing the locally varying non-uniform electric field and ion number concentration along the particle trajectory. The charging rate model developed by Lawless (1996) was used in the present study. According to the present study, the numerical results showed good agreement with the available experimental data.
Abstract Dielectric barrier discharge (DBD) in air, which has been established for the production of large quantities of ozone, is more recently being applied to a wider range of aftertreatment processes for HAPs (hazardous air pollutants). Although DBD has high electron density and energy, its potential use as precharging nano and submicron sized particles, is not known. In this work, we measured V‐I (voltage‐current) characteristics of DBD and estimated the collection efficiency of particles with bimodal distribution by DBD type 2‐stage ESP (electrostatic precipitator). To examine the particle collection with various applied voltage waveforms of DBD, nano size particles of NaCl (20∼100 nm) and DOS (50∼800 nm) were generated by an electrical tube furnace and an atomizer, respectively. Particle collection efficiencies of all the cases increased with increase of DBD electric power that the results corresponded to product of V by I whose magnitudes were the largest in triangular voltage waveform.
The purpose of this work is to develop a new type of particle collection filter using electrical discharge technology. The new filter must be high efficiency and applicable to air conditioner to use for household, so we suggested the new type filter. The new type filter has a distinctive feature except characteristic of ESP, a thickness of collecting electrodes is thicker than that of existing type ESP. When particles come into the filter, the particles will collide with side surfaces of the collecting electrodes. At the same time of particle collision with side surface, the particles are charged by the collision and collected by electrical force. Therefore, we called this type "Ion Impactor". We optimized condition of thickness of collecting electrodes and applied voltage using six sigma method because thickness of collecting electrodes and applied voltage are very important to improve the collection efficiency. We analyzed distribution of electric field line, the electric field lines were uniformly distributed on the side surface of the collecting electrodes. From this analysis, we can see the improvement of the particle collection efficiency. We made the ion impactor type filter on a large scale to equip to the air conditioner, and measured the particle collection efficiency. For the 0.1∼0.2㎛ range particle, the collection efficiency was higher than that of existing type ESP by 30%. The collection efficiency of the 0.3∼0.4㎛ range particle was higher by 12%.