검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 14

        1.
        2020.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Lightly reinforced concrete (RC) moment frames may suffer significant damage during large earthquake events. Most buildings with RC moment frames were designed without considering seismic loads. The load-displacement response of gravity load designed frames could be altered by masonry infill walls. The objective of this study is to investigate the load-displacement response of gravity load designed frames with masonry infill walls. For this purpose, three-story gravity load designed frames with masonry infill walls were considered. The masonry infilled RC frames demonstrated larger lateral strength and stiffness than bare RC frames, whereas their drift capacity was less than that of bare frames. A specimen with a partial-height infill wall showed the least drift capacity and energy dissipation capacity. This specimen failed in shear, whereas other specimens experienced a relatively ductile failure mode (flexure-shear failure).
        4,000원
        2.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to make a generalized analytical based on the proposed experiments on reinforced concrete(RC) partially infilled frames by U-type precast concrete(PC) wall panels with openings. RC frame and PC wall panels were connected with different strengths. Therefore, we developed modified strut-tie model(STM) with two seismic retrofitting specimens and conducted a nonlinear analysis by using a computer analysis program. Based on the test results, truss member of modified STM was designed, applying the strut-tie model theory of ACI 318M-11 Appendix- A. As a result, the modified STM analysis results were very similar to the experimental results. As a result of the load-displacement curve comparison, the failure load were similar within 5∼17% of error range. In particular, the experimental results and the results of modified STM analysis show that the failure behavior almost matched.
        4,200원
        3.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Cyclic loading test was performed on the partially infilled reinforced concrete(RC) frames by L-type precast concrete(PC) wall panels with the connections of two different strength. Based on the results of experimental test, the nonlinear analysis was practiced with modified strut-tie model(STM) method by using a computer program. Truss member of modified STM was designed, applying the strut-tie model theory of ACI 318M-11 Appendix-A. Modified STM was designed with two ways according to the test result. PC wall panel and RC frame were assumed to composite when push loading applied. The PC and RC structures were also assumed to behave non-composite and those two structures connected with link(top connector) when pull loading applied. The connection was designed by using elastic link of program. The results of analytical modified STM process generally conform to the experimental results. The failure load and the failure mode of the specimens could be predicted using modified STM. The ratio of failure load measured in specimens to analytical values were between 0.83∼1.16. The member or connection which was failed in experiment yield in the results of modified STM. The failure mode perfectly matched.
        4,500원
        4.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        When reinforcing an existing reinforced concrete beam-column building with a precast concrete panel, special connection between the PC member and the RC member is required to solve the time dependent deformation of the RC member and to receive the large shear forces. The aim of this study is to obtain the shear strength of upper connection between the existing RC beam-column and infilled PC wall panels in experimentally and theoretically. Thus, the static shear loading tests were conducted on the 6 specimens with the plate connection. Shear failure was resulted from the weakest portion of interior PC panel, exterior RC, and the connection, when the PC portion which located at the center of specimen was pulled upward from the bottom. T he experimental result was compared with analytical result from ACI 318M-14 Chapter 17 for the shear strength of post-installed anchor and PCI Handbook 7th edition 6.8 Structural Steel Corbel (PCI Design Handbook 7th edition, 2010) for the strength of cast-in H-beam. The analytical and experimental results show final failure at the same location. The failure loading of experiment showed larger than average 6% to that of the analysis.
        4,500원
        5.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This report offers an economically reasonable seismic reinforcement to non-seismic mid/low reinforced concrete structures. Installed a slit in between the reinforced concrete frame and masonry infilled wall then inserted twist bar to prevent inversion and attached to the lower/upper beam. Confirmed the seismic reinforcement effect through static loading test. Total of 4 specimens were produced for the test, a masonry infilled wall without seismic reinforcement and with seismic slit or twist bar applied. As a result, applying the seismic slit and twisted bar was economically reasonable and seismic reinforcement effect was confirmed by showing stable failure, increase of maximum strength and yield displacement, increase of accumulated energy dissipation.
        4,000원
        6.
        2016.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 범용유한요소해석 프로그램인 ABAQUS를 사용하여 국내에서 사용되는 콘크리트벽돌을 조적채움벽으로 가진 철근콘크리트 골조를 대상으로 유한요소해석을 실시하였다. 해석대상은 순수골조, 채움벽의 두께가 0.5B인 골조, 두께가 1.0B인 골조의 3종류이다. 철근콘크리트 골조 및 채움벽의 재료특성은 재료시험 결과로부터 구하였으나 두께가 1.0B인 채움벽의 경우 벽돌의 쌓기방법의 차이에 의해 0.5B 두께의 실험체보다 4배 정도 증가된 인장강도를 사용하였다. 유한요소해석결과는 실험을 통해 구한 하중-변위관계 및 변위각에 따른 균열양상을 상당히 정확하게 예측하였다. 유한요소해석 결과의 분석을 통해 조적채움벽과 골조사이의 접촉응력 및 골조의 전단력과 휨모멘트를 산정하였다.
        4,000원
        7.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 저층 조적채움벽 철근콘크리트 골조 구조물의 내진보강 전과 후에 대하여 강제 진동 실험과 상시 진동 계측을 수행하였으며 시스템 식별과정을 통하여 구조물의 동특성을 구하고 해당 구조물과 유사한 동특성을 보이는 해석 모델을 만들었다. 시스템 식별 결과 댐퍼가 설치된 x방향의 감쇠비가 증가되었으며, 해석 모델과 비교한 결과 추가 설치된 부재들(전단벽과 댐퍼)의 유효 강성은 부재의 총단면 강성의 50%만이 발현되어 해당 부재들이 기존의 구조물이나 부재와 완전히 일체화되지는 않음을 알 수 있었다. 또한, 추가 설치된 기초의 y방향 구속조건을 핀으로 하여야 동특성을 일치시킬 수 있었는데, 이는 새로운 기초가 설치되며 해당 지질의 특성이 변화되었기 때문으로 보인다.
        4,000원
        8.
        2017.12 KCI 등재 서비스 종료(열람 제한)
        Recently, the demand for large diameter piles has been rapidly increased in order to secure the allowable bearing capacity of pile foundation due to the increase of large structures such as high rise buildings. In this study, to improve the shear capacity of a conventional PHC pile, a large diameter composite PHC pile strengthened by in-filled concrete and shear reinforcement was manufactured. All the piles were tested according to the shear strength test method of Korean Standard. As a result of the shear test, the F-type piles which are produced without shear reinforcement occurred abrupt horizontal cracks after flexural and inclined shear cracks occurred. On the contrary, the FT-type piles which are produced with shear reinforcement exhibited stable flexural and inclined shear cracks uniformly over the entire pile without abrupt horizontal cracks. Furthermore, the maximum load of the large diameter composite PHC pile improved to 2.9 times in the F series, and more than 3.3 times in the FT series compared to the conventional PHC pile. This result indicated that FT-type piles had excellent composite behavior due to the shear reinforcement and effectively prevented the unstable growth of inclined shear cracks.
        9.
        2017.04 서비스 종료(열람 제한)
        In order to reduce self-weight of structural elements, the use of SCP(Steel Concrete Plate) is getting increased. Since SCP has complicated sectional shape and includes large amount of studs, the use of high-filling concrete is required. Therefore, in this study, It was evaluated the filling performance of filling concrete for SCP module according to our mix proportion. Resultingly, the concrete effectively filled the large-sized SCP module.
        10.
        2017.04 서비스 종료(열람 제한)
        When reinforcing an existing reinforced concrete beam-column building with a precast concrete panel, special connection between the PC member and the RC member is required to solve the time dependent deformation of the RC member and to receive the large shear forces. The aim of this study is to obtain the shear strength of upper connection between the existing RC beam-column and infilled PC wall panels in experimentally and theoretically. Thus, the static shear loading tests were conducted on the 6 specimens with the plate connection. Shear failure was resulted from the weakest portion of interior PC panel, exterior RC, and the connection, when the PC portion which located at the center of specimen was pulled upward from the bottom. The experimental result was compared with analytical result from ACI 318M-14 Chapter 17 for the shear strength of post-installed anchor and PCI Handbook 7th edition 6.8 Structural Steel Corbel (PCI Design Handbook 7th edition, 2010) for the strength of cast-in H-beam. The analytical and experimental results show final failure at the same location. The failure loading of experiment showed larger than average 6% to that of the analysis.
        11.
        2017.01 KCI 등재 서비스 종료(열람 제한)
        In order to reduce self-weight of structural elements, the use of SCP(Steel Concrete Plate) is getting increased. Since SCP has complicated sectional shape and includes large amount of studs, the use of high-filling concrete is required. Therefore, in this study, It was evaluated the filling performance of filling concrete for SCP module according to our mix proportion. Resultingly, the concrete effectively filled the large-sized SCP module.
        12.
        2017.01 KCI 등재 서비스 종료(열람 제한)
        When reinforcing an existing reinforced concrete beam-column building with a precast concrete panel, special connection between the PC member and the RC member is required to solve the time dependent deformation of the RC member and to receive the large shear forces. The aim of this study is to obtain the shear strength of upper connection between the existing RC beam-column and infilled PC wall panels in experimentally and theoretically. Thus, the static shear loading tests were conducted on the 6 specimens with the plate connection. Shear failure was resulted from the weakest portion of interior PC panel, exterior RC, and the connection, when the PC portion which located at the center of specimen was pulled upward from the bottom. The experimental result was compared with analytical result from ACI 318M-14 Chapter 17 for the shear strength of post-installed anchor and PCI Handbook 7th edition 6.8 Structural Steel Corbel (PCI Design Handbook 7th edition, 2010) for the strength of cast-in H-beam. The analytical and experimental results show final failure at the same location. The failure loading of experiment showed larger than average 6% to that of the analysis.
        13.
        2016.09 KCI 등재 서비스 종료(열람 제한)
        최근 구조물의 대형화에 따른 큰 지지력의 말뚝에 대한 수요가 증가하는 추세이다. 이에 따라 기성 PHC말뚝의 경우에도 700~1,200 mm 범위의 대구경 말뚝에 대한 활용이 증가하고 있고 최근 국내 현장에 적용되고 있다. 이 연구에서는 대구경 PHC말뚝의 휨성능을 향상시키기 위 해 철근과 콘크리트로 보강하여 합성 PHC말뚝을 제작하였다. 휨강도 평가는 4등분점 제하실험을 통해 변위제어 방법으로 수행되었다. 휨실 험을 통해 LICPT 실험체 횡방향 철근의 변형률 분포를 분석한 결과 횡방향 철근의 배근은 전단균열의 진전과 균열폭 제어에 효과적인 것으로 나타났고, 복부전단균열 발생을 억제할 수 있었다. LICPT 실험체는 LICP 실험체 보다 휨강도가 약 1.08배, 중앙부 변위가 약 1.19배 증가하였 고, 횡방향 철근의 배근은 말뚝의 연성적인 휨거동 확보에 유리한 것으로 나타났다. 말뚝 제작시 사용되는 각각의 재료가 휨강도에 기여하는 수준을 층상화 단면 해석으로 계산된 축강도-휨모멘트 상관도를 통해 평가하였다. 기성 PHC말뚝과 LICP 실험체의 실제 휨강도를 1.13배, 1.16 배의 안전율로 예측할 수 있었다.