검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 54

        3.
        2020.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aims at investigating the fracture characteristic according to the shape of the double cantilever beam specimen for mode II with ultra-high strength steel and Mg alloy steel. As the analysis, all three models had the left-hand holes that were constrained by the cylindrical support and the right-hand holes were enforced by the constraint condition of 6mm/min. This study result showed that the shorter the load block of the double envelope test specimen, the higher the safety. The results of this study are thought to be useful for examining the fracture characteristics of specimen for mode II with ultra high strength steel and Mg alloy steel.
        4,000원
        4.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper aims at investigating the adhesive property at damage analysis according to the shape of the DCB test specimen made of Titanium, Dualumin as the high strength nonferrous metals. In this analysis, all three specimens had the lower holes bound by the cylinder support and the top holes were elongated with the rate of 6mm/min. The study results show that the longer the load block of DCB specimens, the more reliable and durable they are. It is utilized as the basic data at investigating the damage properties of adhesives in DCB specimens made of high strength nonferrous metals.
        4,000원
        5.
        2019.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the experiments and analyses were carried out in order to investigate the fracture characteristics on the adhesive at the specimen bonded with aluminum and aluminum-foam. The same conditions were given for the experiments and analyses. The results are investigated by the graph of reaction force according to displacement. It was found that the experimental and the analytical data were very similar to each other. On the basis of the data, the reliability of the analysis data could be confirmed. The notches were produced at the distances of 40, 110, 150, and 190 mm from the front of the test specimen, and the maximum reaction force was compared accordingly. It was found that the highest reaction force was generated at the front end of the adhesive and the lowest reaction force was found at the middle of the adhesive interface. Finally, when the equivalent stress in the test specimen was examined, it was found that the highest stress was obtained at the distance of 110 mm. It can be deduced. As the notch formation point are similar to the point when stress is dispersed as the adhesive is peeled off, it is possible to infer the high stress compared to other test specimens.
        4,000원
        6.
        2019.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we investigated the properties of adhesive materials with different lightweight materials such as CFRP and Al-foam. The specimens were tested and analyzed using DCB (Double Cantilever Beam) specimens. In order to secure the reliability of the finite element method, the test and analysis were carried out, and the reliability of the finite element method was secured by using the graph of reaction force to displacement based on the experiment and analysis. The study on the adhesive failure characteristics according to the position of notch hole proceeded. Notch holes were generated at the locations of 40, 110, 150 and 190 mm from the beginning of the specimen near the bonding interface, and the analysis conditions used were the same as those used for securing reliability. The obtained study results are compared with reaction force and equivalent stress. In the case of reaction force, the overall tendency is similar but the difference in maximum reaction force is found. It was found that higher reaction forces appeared at the beginning than at the end of the bonding interface. When the equivalent stresses in the specimens were examined, the value of CFRP was seen to be 30 times higher as much as that of Al-foam.
        4,000원
        9.
        2019.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Lead free (Ba0.7Ca0.3) TiO3 thick films with nano-sized grains are prepared using an aerosol deposition (AD) method at room temperature. The crystallinity of the AD thick films is enhanced by a post annealing process. Contrary to the sharp phase transition of bulk ceramics that has been reported, AD films show broad phase transition behaviors due to the nanosized grains. The polarization-electric hysteresis loop of annealed AD film shows ferroelectric behaviors. With an increase in annealing temperature, the saturation polarization increases because of an increase in crystallinity. However, the remnant polarization and cohesive field are not affected by the annealing temperature. BCT AD thick films annealed at 700 ℃/2h have an energy density of 1.84 J/cm3 and a charge-discharge efficiency of 69.9%, which is much higher than those of bulk ceramic with the same composition. The higher energy storage properties are likely due to the increase in the breakdown field from a large number of grain boundaries of nano-sized grains.
        4,000원
        10.
        2018.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, Equivalent fracture strain and Fracture energy were evaluated with the small punch test(SP test) for friction stir welded(FSW) Al6061-T6 sheets. With the three rotation speeds and the three feeding rate, The nine different conditions of FSW were prepared for the SP test. The SP test specimens were manufactured and tested on the advancing side, center, and retreating side to the tool rotation direction. From the SP test data, the equivalent fracture strain and the fracture energy were analyzed. The high value of equivalent fracture strain was attained form tool rotational speed 900RPM and feeding rate 330mm/min. It is found that its characteristic is about 14% higher than the value of condition 1100RPM-330mm/min that have the lowest value. The high value of fracture energy was obtained from the tool rotation speed 900RPM and feeding rate 330mm/min. The lowest fracture energy, which from 1000RPM-300mm/min, was approximately 16% difference to the highest value.
        4,000원
        11.
        2015.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nowadays, the study of CFRP reinforced with carbon fiber is focused on improving the the mechanical property. The study on the fracture data of CFRP are not properly made out than that of the general mechanical joint. In this study, the fracture property of mode 1 at the same condition of tensile experiment is investigated by applying the layer angle to laminated CFRP with the thickness of 15 mm. When the reaction forces until dropping out the bonded surface are compared with the cases of the layer angles of 0°, 45° and 60°, the reaction force is shown to be most and the elapsed time until dropping out the bonded surface is longest at that of 45°. The deformation energy is also shown to have the highest value by dropping out the adhesive interface. As the basis of the analysis result of this study, the most safety with fracture resistance is shown in the case of 45°. the bonded structure applying the appropriate layer angle is thought to have the structural safety.
        4,000원
        12.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : In this study, a fracture-based finite element (FE) model is proposed to evaluate the fracture behavior of fiber-reinforced asphalt (FRA) concrete under various interface conditions. METHODS: A fracture-based FE model was developed to simulate a double-edge notched tension (DENT) test. A cohesive zone model (CZM) and linear viscoelastic model were implemented to model the fracture behavior and viscous behavior of the FRA concrete, respectively. Three models were developed to characterize the behavior of interfacial bonding between the fiber reinforcement and surrounding materials. In the first model, the fracture property of the asphalt concrete was modified to study the effect of fiber reinforcement. In the second model, spring elements were used to simulated the fiber reinforcement. In the third method, bar and spring elements, based on a nonlinear bond-slip model, were used to simulate the fiber reinforcement and interfacial bonding conditions. The performance of the FRA in resisting crack development under various interfacial conditions was evaluated. RESULTS : The elastic modulus of the fibers was not sensitive to the behavior of the FRA in the DENT test before crack initiation. After crack development, the fracture resistance of the FRA was found to have enhanced considerably as the elastic modulus of the fibers increased from 450 MPa to 900 MPa. When the adhesion between the fibers and asphalt concrete was sufficiently high, the fiber reinforcement was effective. It means that the interfacial bonding conditions affect the fracture resistance of the FRA significantly. CONCLUSIONS: The bar/spring element models were more effective in representing the local behavior of the fibers and interfacial bonding than the fracture energy approach. The reinforcement effect is more significant after crack initiation, as the fibers can be pulled out sufficiently. Both the elastic modulus of the fiber reinforcement and the interfacial bonding were significant in controlling crack development in the FRA.
        4,000원
        13.
        2015.04 구독 인증기관·개인회원 무료
        This study is a part of high strength lightweight aggregate concrete researches using lightweight aggregates and the purpose of this study is to find out the basic physical characteristics and tension cracking fracture characteristics of lightweight concrete. Crack Mouth Opening Displacement is measured through three point flexure experiment about embellish notch beam. Load-CMOD characteristics are examined through rules of countries, characteristics of lightweight concrete and tension cracking fracture experiments. The degree of tensile characteristic alteration according to size changes of specimen and the characteristics about crack surface are analyzed. The changes of softening curve are analyzed and fracture energy is drawn through inverse analysis by the obtained Load-CMOD curve. To decide fracture energy and analysis parametric, inverse analysis is conducted and Ant Colony Method is conducted for optimization and then a way to find out optimal parameterization fracture energy is suggested.
        14.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A progressive failure analysis procedure for composite laminates is completed in here. An anisotropic plastic constitutive model for fiber-reinforced composite material is implemented into computer program for a predictive analysis procedure of composite laminates. Also, in order to describe material behavior beyond the initial yield, the anisotropic work-hardening model and subsequent yield surface are implemented into a computer code, which is Predictive Analysis for Composite Structures (PACS). The accuracy and efficiency of the anisotropic plastic constitutive model and the computer program PACS are verified by solving a number of various fiber-reinforced composite laminates with and without geometric discontinuity. The comparisons of the numerical results to the experimental and other numerical results available in the literature indicate the validity and efficiency of the developed model.
        4,000원
        15.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A progressive failure analysis procedure for composite laminates is developed in here and in the companion paper. An anisotropic plastic constitutive model for fiber-reinforced composite material, is developed, which is simple and efficient to be implemented into computer program for a predictive analysis procedure of composites. In current development of the constitutive model, an incremental elastic-plastic constitutive model is adopted to represent progressively the nonlinear material behavior of composite materials until a material failure is predicted. An anisotropic initial yield criterion is established that includes the effects of different yield strengths in each material direction, and between tension and compression. Anisotropic work-hardening model and subsequent yield surface are developed to describe material behavior beyond the initial yield under the general loading condition. The current model is implemented into a computer code, which is Predictive Analysis for Composite Structures (PACS), and is presented in the companion paper. The accuracy and efficiency of the anisotropic plastic constitutive model are verified by solving a number of various fiber-reinforced composite laminates with and without geometric discontinuity. The comparisons of the numerical results to the experimental and other numerical results available in the literature indicate the validity and efficiency of the developed model.
        4,000원
        19.
        2008.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The micro-structural changes, strength characteristics, and micro-fractural behaviors at the joint interface between a Sn-4.0wt%Ag-0.5wt%Cu solder ball and UBM treated by isothermal aging are reported. From the reflow process for the joint interface, a small amount of intermetallic compound was formed. With an increase in the isothermal aging time, the type and amount of the intermetallic compound changed. The interface without an isothermal treatment showed a ductile fracture. However, with an increase in the aging time, a brittle fracture occurred on the interface due mainly to the increase in the size of the intermetallic compounds and voids. As a result, a drastic degradation in the shear strength was observed. From a microshear test by a scanning electron microscope, the generation of micro-cracks was initiated from the voids at the joint interface. They propagated along the same interface, resulting in coalescence with neighboring cracks into larger cracks. With an increase in the aging time, the generation of the micro-structural cracks was enhanced and the degree of propagation also accelerated.
        4,000원
        20.
        2004.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        4,000원
        1 2 3