이 연구에서는 TEC-BNR공법을 사용하는 하수처리장에서 강수발생시와 같은 저농도 유입수에, 하수처리장의 생슬러지, 분뇨처리수, 그리고 음식물 쓰레기 처리액을 산발효하여 생성된 유기산을 외부탄소원으로 투입하였을 때, 비탈질율과 인방출율의 변화를 정량적으로 측정하였다. 이 연구에 의하면 산발효액 투입하였을 때 평균 비탈질율은 산발효액의 투입율이 0.5%일 때 215%, 투입율이 1%일 때는 169% 증가하였고, 평균 인방출양은 산발효액의 투입율이 0.5%일 때 46%, 투입율이 1%일 때는 63%로 증가하는 것으로 밝혀졌다. 또한 이 연구의 결과를 통하여 탈질에 이용된 VFA양(12.6∼32.3 mgVFA/mgNO₃-N)과 인방출에 이용된 VFA양(1.7∼2.4 mgVFA/mgPO₄-P)도 계산할 수 있었다. 이 연구의 결과를 활용하면 하수처리장에서 저농도 유입수에 산발효액을 외부탄소원으로 사용할 경우, 탈질과 인 제거를 최적화하기 위한 산발효액(VFA)의 양을 정량화할 수 있을 것으로 생각된다.
활성슬러지 생물반응기 내 핵심 미생물군은 하수처리장에서 미생물 군집이 수행하는 생태학적 역할을 이해하는 데 중요한 기반이 된다. 본 연구에서는 이러한 핵심 미생물군의 생태학적 중요성을 규명하기 위해, 한국과 중국에 위치한 6개의 실규모 하수처리장에서 채취한 총 39개의 시료를 대상으로 고효율 염기서열 분석 기반의 미생물 군집 분석을 수행하였다. 분석 결과, 각각의 하수처리장에서 관찰된 미생물 군집 변동성은 하수처리장 간의 변동성보다 낮은 패치 동역학이 관찰되었다. 이 결과는 핵심 미생물군이 공간적 스케일보다는 시간적 스케일에서 정의될 수 있음을 보여준다. 또한, 미생물의 기능적 동역학을 비교한 결과, 하수처리장 전반에 걸쳐 통계적으로 유사한 기능적 대사경로가 관찰되었으며, 이는 활성슬러지 생물반응기 내 미생물 군집이 분류학적으로 상이하더라도 유사한 기능을 수행하고 있음을 시사한다. 종합적으로, 본 연구는 하수처리장 미생물 군집의 기능적 중복성에 대한 통찰력을 제공한다.
하수처리장 유출수의 수질 예측은 수질 사고의 사전 대응 및 처리장의 안정적인 운영을 위해 필수적인 요소이다. 최근 머신러닝을 활용한 예측 모델링에서 예측 성능 향상과 과적합 방지를 위해 다양한 교차 검증법과 하이퍼파라미터 최적화 기법이 활용되고 있으나, 하수처리장 데이터는 시간적 의존성과 급격한 변동성이 내재되어 있어 과적합에 취약하고 안정적인 모델 구축에 어려움이 따른다. 본 연구에서는 이러한 데이터 특성을 효과적으로 반영할 수 있는 최적의 모델링 파이프라인을 구축하고자 하였으며, XGBoost 모델을 기반으로 유출수 내 총질소 농도를 예측하였다. 예측 성능 평가 지표로는 평균 제곱근 오차(Root Mean Square Error, RMSE), 결정계수(coefficient of determination, R2), RMSE 오차 개선율(the rate of improvement on RMSE, RIRRMSE) 그리고 계산 시간을 사용하였다. 기본적인 Hold-out 방식의 성능을 기준으로 K-fold, 시계열 교차 검증(Time Series Cross Validation, TSCV), 블록 시계열 교차 검증(Blocked Time Series Cross Validation, BTSCV) 기법의 예측 성능을 분석한 결과, BTSCV는 인접한 데이터만을 고려하는 방식으로 시간적 의존성과 급변 특성을 효과적으로 반영하여 가장 높은 RIR(36.37%)을 기록하였다. 또한, 하이퍼파라미터 최적화(그리드 서치와 베이지안 최적화) 기법과의 다양한 교차 검증법의 조합을 통해 모델 성능과 과적합 방지 효과를 분석한 결과, BTSCV와 베이지안 최적화의 결합은 짧은 계산 시간(364.64초)과 함께 가장 높은 RIR(64.93%)을 보였으며, 훈련 및 평가 데이터 간 성능 차이도 최소화되어 일반화된 예측 모델로서의 효과성이 입증되었다. 따라서 본 연구는 하수처리장 시계열 데이터의 특성에 적합한 BTSCV와 베이지안 최적화 기법을 결합한 모델링 파이프라인 전략을 제안하며, 향후 실시간 수질 모니터링 및 하수처리장 운영 효율성 제고에 기여할 수 있을 것으로 기대된다.
Membrane-Aerated Biofilm Reactor(MABR)는 하수처리 공정의 에너지 효율을 획기적으로 개선할 수 있는 차세대 기술로 주목받고 있다. 기존 활성슬러지 공정의 기포형 산기 시스템은 산소전달효율(OTE)이 낮고 전체 에너지 소비의 80%까지 차지하는 등 에너지 비효율성을 내포하고 있다. 반면 MABR은 기체 투과성 막(membrane)을 통해 생물막으로 산소를 직접 공급함으로써, 이론적으로 100%까지 OTE 달성이 가능하다. 본 논문은 MABR의 산소전달 메커니즘과 구조적 특징을 정리하고, OTE, 산소전달속도(OTR), 폭기 효율(AE) 등의 에너지 효율 지표를 중심으로 파일럿 및 실규모 적용 사례 11건을 분석하였다. 분석 결과, AE는 기존 활성슬러지 공정 대비 약 4-5배 향상된 수치이다. 그러나 OTE와 OTR 간의 상충관계, 공정 규모, 기질 농도 등 다양한 운영 변수에 따라 성능이 상이하게 나타났으며, 현장 적용에서는 이론적 효율을 하회하는 사례도 확인되었다. 이러한 한계를 극복하기 위한 기술적 접근으로는 간헐 공기 공급, 주기적 환기, 막 소재 개선, 막 이완 제어 등이 시도되고 있다. 동시에, 실증 연구들 간 실험 조건 및 효율 지표 산정 기준의 상이함은 결과 해석의 일관성을 저해하는 요인으로 지적된다. 따라서 본 연구는 향후 MABR 기술의 실용화를 위해 에너지 효율 평가 기준의 표준화와 대규모 현장 검증의 필요성을 강조한다.
본 연구에서는 하수처리 과정에서 분리된 항생제 내성균(Antibiotic Resistant Bacteria, ARB)을 제거하기 위해 박테리오파지와 차아염소산 나트륨(NaClO)을 결합한 병용 처리 기술을 응용하였다. ARB를 감염시키는 용균성 박테리오파지는 폐수 샘플에서 성공적으로 분리되었다. 이러한 박테리오파지와 NaClO를 순차적으로 적용한 결과, 5시간 이내에 ARB를 상당히 감소시킬 수 있었다. 환경 안정성 평가에서는 분리된 박테리오파지가 온도, pH, 독성 물질에 대한 노출 등 다양한 조건에서도 효과를 유지하는 것으로 나타냈다. 또한, 실험실 규모의 반응기 실험을 통해 단독 염소 소독과 비교했을 때, 결합 처리가 ARB를 효과적으로 억제하는 것을 확인할 수 있었다. 박테리오파지와 차아염소산 병용 처리는 유기물, 질소(N), 인(P)과 같은 영양소 제거 효율에 영향을 미치지 않았다. 이러한 결과는 박테리오파지를 기반으로 한 생물학적 제어법과 기존의 소독 방식을 결합하여 폐수 처리 공정(Wastewater treatment plant, WWTP)에서 효과적인 항생제 내성 박테리아 제어 방안을 제시할 가능성을 시사한다.
Due to the onset of urbanization worldwide, there is an increasing demand for improving the quality of the urban environment. Odor in wastewater collection systems (WCSs) can interfere with the comfortable and safe living conditions of citizens. Additionally, it can cause economic losses, such as the corrosion of wastewater collection facilities. In this paper, the mechanism of odor generation in WCSs was summarized, and the odor concentrations and sulfide generation rates measured in domestic and foreign WCSs were comprehensively analyzed to review the characteristics of odor emission in WCSs. The complex odor intensity (dilution-tothreshold value) measured in combined domestic sewers ranged from 10 to 10,000, with a median of 100. The odorous compound with the highest contribution to complex odor intensity was hydrogen sulfide, which was the odor most frequently detected at the highest concentrations in most WCSs (its median and mean concentrations were 378.0 ppb and 3,771.2 ppb, respectively). The odor emission properties in the WCSs in Australia and Finland were similar to those of South Korea, with the median and mean concentrations of hydrogen sulfide being 1,927.5 ppb and 12,306.1 ppb, respectively. The sulfide generation rates measured in domestic and foreign WCSs ranged from 0.003 to 0.220 g m–2 h–1. In addition, the key factors affecting sulfide generation were sulfate and organic matter concentrations, pH, temperature, flow rate (retention time), dissolved oxygen concentration, and electron acceptor concentrations other than sulfate. To control odor in WCSs, various methods have been proposed to improve their anaerobic environment. These include sucking outside air into the WCSs and improving their hydraulic conditions, such as changing the slope of sewer pipes to minimize sediment deposition. Additionally, periodically removing sediments, which contain a significant amount of organic matters and sulfate-reducing bacteria, is also a useful method for controlling odor in WCSs. Since the odor compounds that contribute the highest odor intensity–and are the most frequently detected–are sulfur-containing odors such as hydrogen sulfide, the control of sulfides is crucial for controlling odor in WCSs. There are chemical control methods for the mitigation of sulfide in WCSs, including air (oxygen) injection and introducing various chemicals, such as alkalis, nitrates, iron salts, and biocides. However, most of the results of odor control using these methods were from laboratory-scale studies. Therefore, additional field-scale experiments should be conducted in WCSs to evaluate the actual effectiveness of various odor control methods. Through these field studies, the optimal conditions for each method to control odor in WCSs can be derived, and the efficiency and economic feasibility of each method can be verified.
A total of 10,977 individual sewage treatment facilities(ISTFs) have been installed and operated on Jeju island as of 2022. The number of ISTFs has increased rapidly in the hillside area, where the elevation is above 200 m and is recognized as a major area for groundwater recharge. A total of 80 ISTFs were selected for this study, with a particular focus on their management status and effluent water quality. This was carried out in two areas, Aewol-eup and Jocheon-eup, which are known to have the highest density of ISTFs in Jeju island. Consequently, 23.9% of ISTFs failed to remove sludge regularly, and 41.3% of ISTFs did not run the blower. The effluent water quality revealed that violating percentage of the legal standards for BOD, SS, T-N, and T-P were 75.0%, 62.5%, 100%, and 86%, respectively. To assess the efficiency of effluent quality by management, an independent t-test and ANOVA were conducted. The BOD and TOC differed significantly according to the building usage. Therefore, it can be concluded that the effluent from ISTFs should be managed according to the building usage. Furthermore, no distinction was observed in contamination components due to blower operation, with the exception of DO. However, the mean value of the NH4 +-N/T-N ratio was found to decrease with DO, indicating that blower operation may potentially reduce the contamination burden of ammonium in groundwater.
2021년 기준 4,339개소의 공공하수처리시설에서 발생하는 하수찌꺼기는 년간 4,271,110톤으로 하수처리장 신·증설 등으로 인해 매년 증가하고 있다. 하수찌꺼기 등 유기성폐자원의 처리를 위해서 퇴비화, 혐기성 소화, 열분해, 소각, 매립 등 다양한 방법이 적용되고 있다. 특히 혐기성 소화는 잔류고형물 저감, 자본비와 운영비 절감, 바이오에너지 생산 및 환경에 대한 영향 최소화 등의 장점을 지니고 있어 실행 가능한 방법 중의 하나로 간주되고 있다. 그러나 하수찌꺼기 등과 같이 고형물을 함유한 유기성폐자원의 혐기성 소화 시 가수분해 반응은 율속단계로 알려져 있다. 따라서 혐기성 소화 시 가수분해 효율을 증진하기 위하여 초음파, 마이크로웨이브, 화학적 전처리, 열가수분해 등의 방법이 적용되고 있다. 특히 열가수분해의 경우 지난 20년간 관련 연구가 꾸준히 이루어져 많은 수의 실 규모 시설이 현장에 적용되었다. 그럼에도 불구하고 높은 에너지 소비, 혐기성 소화 저해물질 생성 및 색도로 인한 자외선 소독 효율 저감 등으로 인해 아직도 관련 연구가 지속적으로 진행 중이다 따라서 본 논문에서는 하수찌꺼기의 안정화와 혐기성 소화조의 효율 향상을 위해 가용화 기술 중 대표적이고 상용화가 가장 많이 이루어진 열가수분해에 대해 고찰하고자 한다. 특히 하수처리시설에서 열가수분해와 혐기성 소화조를 연계 하는 경우 예상되는 문제점과 해결방안에 대한 제시를 통해 혐기성 소화조의 안정성 및 메탄 발생량 향상, 하수처리시설 찌꺼기의 효율적 저감 및 에너지 자립화에 기여하고자 한다.
A study on the denitrification of reverse osmosis(RO) concentrated wastewater from sewage reuse treatment plant in P city was conducted using waste desulfurization agent obtained from desulfurization process. Sulfur-based autotrophic denitrifying carrier comprises the predetermined amount of waste iron sulfide (FeS, Fe2S3), mine drainage sludge and elemental sulfur showing mesoporisity with 9.9 nm (99 Å) of average pore size. Sulfur denitrifying bacteria and sulfur reducing bacteria were implanted into the pores of sulfur denitrifying carrier. Nitrate was not affected by empty bed contact time (EBCT). It is probably due to larger reducing capacity of the carrier than the concentration of nitrate in RO concentrated wastewater. Total nitrogen (T-N) removal efficiency exhibited about 90% after 4 days. Sulfate ion was surprisingly decreased with sulfur autotropic process due to the reduction of sulfate ion to HS- and S2- by sulfur reducing bacteria. Sulfide and hydrogen sulfide ions were then taken by Fe(OH)3, main component of mine drainage sludge, releasing OH-. Alkalinity was therefore maintained between 7.5 and 8.5 in pH by the released OH-. Also, it had the effect of suppressing the production of H2S, which causes bad odor.
To mitigate carbon emissions, the government aims to transition to renewable energy sources including hydrothermal energy, specifically through wastewater heat recovery. This process involves extracting heat from wastewater or treated water. However, assessments of demand sources for local cooling and heating have predominantly focused on the proximity of nearby facilities, without conducting comprehensive demand analyses or defining explicit supply areas. This study proposes a methodology for prioritizing suitable wastewater treatment plants (WWTPs) for the implementation and expansion of renewable energy. The methodology is based on the gross floor area of potential wastewater heat demand surrounding WWTPs. Initially, potential supply and demand sources were identified based on the capacity of WWTPs and the gross floor area of buildings capable of utilizing wastewater heat. In the Republic of Korea, 330 WWTPs with a capacity of 5,000 m3/day or more have been recognized as demand sources for wastewater heat recovery. The provision of treated wastewater to structures located within a 500 m radius of the WWTPs for heat recovery is considered a feasible option. The potential wastewater heat demand and renewable energy cluster were identified among the surrounding buildings and complexes A total of 13 potential supplies were identified, provided that the gross floor exceeded 60,000 m². Finally, after prioritizing based on WWTPs with these conditions, the underground plant located in the downtown area was ranked as the highest priority. If further analysis of economic feasibility, CO2 reduction, and energy efficiency are conducted, this approach can be expanded and applied within the framework the Water-Energy Nexus. Wastewater heat can be utilized not only as a renewable energy source but also as a means to enhance wastewater reuse through the supply of treated wastewater.
This study evaluates the potential of various coagulants to enhance the efficiency of total phosphorus removal facilities in a sewage treatment plant. After analyzing the existing water quality conditions of the sewage treatment plant, the coagulant of poly aluminium chloride was experimentally applied to measure its effectiveness. In this process, the use of poly aluminium chloride and polymers in various ratios was explored to identify the optimal combination of coagulants. The experimental results showed that the a coagulants combination demonstrated higher treatment efficiency compared to exclusive use of large amounts of poly aluminium chloride methods. Particularly, the appropriate combination of poly aluminium chloride and polymers played a significant role. The optimal coagulant combination derived from the experiments was applied in a micro flotation method of real sewage treatment plant to evaluate its effectiveness. This study presents a new methodology that can contribute to enhancing the efficiency of sewage treatment processes and reducing environmental pollution. This research is expected to make an important contribution to improving to phosphorus remove efficiency of similar wastewater treatment plant and reducing the ecological impact from using coagulants in the future.
This study explored effects of a sludge-based biochar addition on nitrogen removal of membrane bioreactor (MBR) for wastewater treatment. The membrane fouling reduction by the biochar addition was also investigated. A dose of 3 g/L of the biochar was applied to an MBR (i.e., BC-MBR) and treatment efficiencies of organic matter and nutrient were analyzed. The MBRs with powdered activated carbon (i.e., AC-MBR) and without any additives were also operated in parallel. The average removals of COD and TN were improved with the biochar addition compared to those with the control MBR. Interestingly, operational duration was also increased with biochar addition. The CLSM analysis revealed that biomass amounts of BC-MBR and AC-MBR were reduced by more than 40%, and thickness of the biofilm attached to the membrane surface also was decreased. The physical properties of biochar surfaces were compared with a commercial powdered activated carbon. The specific surface area with 38 m2/g and pore volume with 0.13 cm3/g of the biochar were much smaller than those of the powdered activated carbon, which were 1100 m2/g and 0.67 cm3/g, respectively. Manufacturing conditions for the biochar production needs to be further investigated for enhancing physical properties for adsorption and biological improvement.
하수기반역학을 이용한 코로나19 감시 결과, 연구기간 (2022년 8월-2023년 8월)동안 울산지역 4곳 하수처리장의 전체 174건 모든 시료에서 코로나바이러스-19가 검출되었 다. 확진자 수와 하수 내 코로나바이러스 농도와의 상관 분석 결과, 높은 상관성이 나타났으며 특히 하수감시가 임 상감시보다 2-3주 앞서 농도가 증가함으로써 조기 인지의 가능성도 볼 수 있었다. 또한 코로나19 변이 분석 결과 역 시 유행 시기별 우세종화된 변이와 비교적 유사하여 변이 예측도 가능하였다. 하수감시가 전국적, 전세계적으로 적용되고 있으며 많은 연구가 국가적 사업으로 진행되고 있 다. 이에 따라, 하수 분석방법 및 분석기기 발전 등의 지 속적 연구 업데이트가 필요하다. 또한 코로나19를 통해 감 염병의 선제적 모니터링 및 유행 예측의 가능성을 확인하 였으므로 다양한 병원체 및 식품·의약품 등에 확대 적용 이 진행 중이다. 따라서 본 연구는 감염병 검출분야에서 더 나아가 하수 내 식품 성분, 활성물질 및 미생물 등의 분석을 통해 지역사회의 식품안전 및 전반적인 위생환경 감시를 위해 활용될 수 있을 것으로 기대된다.
The purpose of this study is to analyze the correlation between ecotoxicity and water quality items using Daphnia magna in public sewage treatment plant process and to obtain operational data to control ecotoxicity through research on removal efficiency. The average value of ecotoxicity was 1.39 TU in the influent, 1.50 TU in the grit chamber, and 0.84 TU in the primary settling tank and it was found that most organic matters, nitrogen, and phosphorus were removed through biological treatment in the bioreactor. Using Pearson’s correlation analysis, the positive correlation was confirmed in the order of ecotoxicity and water quality items TOC, BOD, T-N, NH3-N, SS, EC, and Cu. As a result of conducting a multilinear regression analysis with items representing positive correlation as independent variables, the regression model was found to be statistically significant, and the explanatory power of the regression model was about 81.6%. TOC was found to have a significant effect on ecotoxicity with B=0.009 (p<.001) and Cu with B=16.670 (p<.001), and since the B sign is positive (+), an increase of 1 in TOC increases the value of ecotoxicity by 0.009 and an increase in Cu by 1 increases the value of ecotoxicity by 16.670. TOC (β=0.789, p<.001) and Cu (β=0.209, p<.001) were found to have a significant positive effect on ecotoxicity. TOC and Cu have a great effect on ecotoxicity in the sewage treatment plant process, and it is judged that TOC and Cu should be considered preferentially and controlled in order to efficiently control ecotoxicity.
In the context of the Ministry of Environment’s 2022 Climate Change Adaptation Plan for Public Institutions, public sewage treatment plants are one of the important targets for climate change response aimed at sustainable water management. In this study, it is applied a modified methodology to four water regeneration centers (public sewage treatment facilities) in charge of sewage treatment in Seoul to analyze the impacts and risks of climate change and discuss priorities for adaptation measures. The results of the study showed that heavy rains, heat waves, and droughts will be the key impacts of climate change, and highlighted the need for measures to mitigate these risks, especially for facility managers.
Small hydropower systems have emerged as an attractive solution for areas with low head and flow rates, offering versatility for implementation in diverse locations such as rivers and wastewater treatment plants. This research specifically focuses on exploring the potential of small hydropower generation within wastewater treatment plants. Through the utilization of computational fluid dynamics (CFD) analysis, the study successfully predicted the torque and power generation capacity of the installed turbine. The analysis underscored the effective control of fluid flow achieved through careful turbine design, including considerations of blade shape and quantity. For instance, in the case of the Tancheon wastewater treatment plant, the study revealed the ability to generate a torque of approximately 7000 Nm, translating to an estimated power production of around 48.3 kW per hour. Ultimately, this research significantly contributes to evaluating the feasibility and viability of small hydropower generation within wastewater treatment plants.
The object of this study is to feasibility assesment for co-digestion efficiency of food waste recycling wastewater(FWR) with thermal hydrolysis process dehydration cake (THP Sludge). As a result of THP pre-treatment experimental conditions to 160oC and 30 minutes, the solubility rate(conversion rate of TCOD to SCOD) of the THP sludge increased by 34%. And the bio-methane potential in the THP sludge increased by about 1.42 times from 0.230 to 0.328 m3 CH4/kg VS compared to the non-pre-treatment. The substrates of the co-digestion reactor were FWR and THP sludge at a 1:1 ratio. Whereas, only FWR was used as a substrate in the digestion reactor as a control group. The experimental conditions are 28.5 days of hydraulic retention time(HRT) and 3.5 kg VS/m3-day of organic loading rate(OLR). During the 120 days operation period, the co-digestion reactor was able to operate stably in terms of water quality and methane production, but the FWR digestion reactor deteriorated after 90 days, and methane production decreased to 0.233 m3 CH4/kg VS, which is 67% of normal condition. After 120 days of the experiment, organic loading rate(OLR) of co-digestion reactor was gradually increased to 4.5 kg VS/m3-day and operated for 80 days. Methane production during 80 days was evaluated to be good at the level of 0.349 m3 CH4/kg VS. As a result of evaluating the dehydration efficiency of the sludge before/after 150-180oC THP using a filter press, it was confirmed that the moisture content of the sludge treated before THP at 180oC was 75% and improved by 8% from 83-85% level. Therefore, it is expected that the co-digestion reactor of FWR and THP sludge will ensure stable treatment water quality and increase bio-methane production and reduction effect of dehydration sludge volume.