검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 216

        106.
        2005.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The copper oxide nano powders were synthesized by levitational gas condensation (LGC) method, and were applied to catalyst to fabricate 3,4-dihydropyrimidin-2-(1H)-one. Processes of adsorption of Biginelli reaction reagents on the copper nanooxide surface were studied by IR-spectroscopy. It was shown that benzaldehyde coordination, acetoacetic ether on the oxide surface is carried out with participation of carbonyl fragments, urea by N-H bonds which affects positively on the reagents reactivity.
        4,000원
        110.
        2005.06 구독 인증기관·개인회원 무료
        Ultra-fine copper powders with particle size about 150 nm were synthesized from copper hydroxide slurry by wet method using hydrazine as reduction agent and several sur factants at below . The particle size distribution and dispersion of synthesized powders as function of temperature, feeding rate of reduction and especially, sur factants were character ized by XRD, BET, PSA and SEM by this process.
        115.
        2005.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ultrafine copper powder was prepared from slurry with hydrazine, a reductant, under . The influence of various reaction parameters such as temperature, reaction time, molar ratio of , PvP and NaOH to Cu in aqueous solution had been studied on the morphology and powder phase of Cu powders obtained. The production ratio of Cu from CuO was increased with the ratio of and the temperature. When the ratio of was higher than 2.5 and the temperature was higher than , CuO was completely reduced into Cu within 40 min. The crystalline size of Cu obtained became fine as the temperature increase, whereas the aggregation degree of particles was increased with the reaction time. The morphology of Cu powder depended on that of the precursor of CuO and processing conditions. The average particle size was about
        4,000원
        116.
        2005.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The copper oxide nano powders were synthesized by levitational gas condensation(LGC) method, and their high heterogeneous catalytic effects of oxidation of 2,3,5-trimethyl-1,4- hydroquinone (TMHQ) and catalase activity were studied. The observation of transmission electron microscopy (TEM) shows that most of these nano powders are uniform in size, with the average particle size of 35 nm. The nano powder consists of mainly , but it is aged to CuO phase. The catalytic effect which was clarified by oxidation of TMHQ and catalase depends on the amount of cuprite phase and the particle size.
        4,000원
        117.
        2005.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        nano cubes with high catalase activity were synthesized by reduction of freshly prepared Cu in distilled water at and their catalase activities of were studied. Transmission electron microscopy (TEM) observation showed that most of these nanocubes were uniform in size, with the average edge length of 30 nm. Selected area electron diffraction of TEM revealed that the nanocube consisted of single crystalline , but it changed to CuO phase. The catalase activity depends on the amount of both cuprite phase and surface area.
        4,000원
        118.
        2004.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the study, a hybrid constitutive model for densification of metallic powders was applied to cold isostatic pressing. The model is based on a pressure-dependent plasticity model for porous materials combined with a dislocation density-based viscoplastic constitutive model considering microstructural features such as grain size and inter-particle spacing. Comparison of experiment and calculated results of microscale and nanoscale Cu powders was made. This theoretical approach is useful for powder densification analysis of various powder sizes, deformation routes and powder processing methods.
        4,000원
        119.
        2004.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The possibility to decrease agglomeration of Cu nano powders and their separation during pulsed wire evaporation (PWE) process was investigated by controlling the working gas system, i.e., the design of the gas path, the type and pressure of the atmospheric gas. As a result, it was possible to choose the optimal design of the gas path providing large specific surface area and high degree of separation of the synthesized Cu nano powders. It was also shown that an Ar+10∼50 mixture can be used in production of Cu nano powders, which do not react with nitrogen.
        4,000원