본 연구는 초등학생들의 깊이 있는 학습을 위하여 AI 코스웨어를 활용한 개념기반 탐구수업의 통 합 모델을 교육공학적으로 개발하는데 목적이 있다. 이를 위하여 개념기반 교육과정 및 수업(CBCI)과 AI 코스웨어에 대한 문헌연구로 이론적 토대를 마련하고, AI 코스웨어 활용 개념기반 탐구수업의 통합 모델을 설계 및 개발하였다. 연구 결과는 다음과 같다. 첫째, AI 코스웨어 활용 개념기반 탐구수업의 모델을 진단분석, 전략설정, 수업설계(개념질문-과제탐색-과제해결-개념성찰), 전이촉진으로 명료화 하였다. 둘째, 패러다임 변화 이론에 따라, 통합 모델의 혁신 가능성을 평가하고 새로운 교육 패러다임 의 실질적인 적용 가능성을 통찰하였다. 이를 토대로 사례분석부터 모형구상, 모형숙의, 모형수정 과정 을 반복하며 통합 모델을 정교화하였다. 마지막으로, AI 코스웨어 활용 개념기반 탐구수업 연구에 참 여한 자문그룹과 워킹그룹을 심층 인터뷰하여 통합 모델의 설계-실행-생성 과정을 검토하고 교육과 정 및 수업의 적용과 실행을 위한 시사점을 도출하였다. 결론적으로, 본 연구는 AI 코스웨어와 개념기 반 탐구수업의 통합적인 방법론의 효과성을 확인하였으며, 향후 연구와 개발에 대한 지속적인 노력이 필요하다는 점을 시사한다.
PURPOSES : For autonomous vehicles, abnormal situations, such as sudden changes in driving speed and sudden stops, may occur when they leave the operational design domain. This may adversely affect the overall traffic flow by affecting not only autonomous vehicles but also the driving environment of manual vehicles. Therefore, to minimize the traffic problems and adverse effects that may occur in mixed traffic situations involving manual and autonomous vehicles, an autonomous vehicle driving support system based on traffic operation optimization is required. The main purpose of this study was to build a big-data-classification system by specifying data classification to support the self-driving of Lv.4 autonomous vehicles and matching it with spatio-temporal data. METHODS : The research methodology is explained through a review of related literature, and a traffic management index and big-dataclassification system were built. After collecting and mapping the ITS history traffic information data of an actual Living Lab city, the data were classified using the traffic management indexing method. An AI-based model was used to automatically classify traffic management indices for real-time driving support of Lv.4 autonomous vehicles. RESULTS : By evaluating the AI-based model performance using the test data from the Living Lab city, it was confirmed that the data indexing accuracy was more than 98% for the KNN, Random Forest, LightGBM, and CatBoost algorithms, but not for Logistics Regression. The data were severely unbalanced, and it was necessary to classify very low probability nonconformities; therefore, precision is also important. All four algorithms showed similarly good performances in terms of accuracy. CONCLUSIONS : This paper presents a method for efficient data classification by developing a traffic management index to easily fuse and analyze traffic data collected from various institutions and big data collected from autonomous vehicles. Additionally, EdgeRSU is presented to support the driving of Lv.4 autonomous vehicles in mixed autonomous and manual vehicles traffic situations. Finally, a database was established by classifying data automatically indexed through AI-based models to quickly collect and use data in real-time in large quantities.
본 연구는 디지털 영상 제작 프로세스에서 점점 중요한 역할을 하고 있는 생성형 AI의 발전과 그 영향을 탐구한다. GPT, GAN 및 기타 생성 알고리즘과 같은 모델의 개발에서 AI 기술의 급속한 발전으로 영상 제작 환경이 큰 변화를 겪고 있다. ChatGPT, Runway, DALL·E, MidJourney, SunoAI 등 생성형 AI 모델의 발전으로 영상 제작 단계에서 적용 가능성이 크게 확장되었다. 생성형 AI는 아이디어 기획에서부터 최종 편집 프로세스에 이르기까지 다양한 제 작 단계를 간소화할 수 있는 잠재력이 있다. 예를 들어, AI는 플롯 아이디어나 대화를 생성하 여 대본 작성을 지원할 수 있으며, 후반 작업에서는 시각 효과를 향상시키고, 사실적인 환경을 만들거나, 반복적인 편집 작업을 자동화할 수 있다. 또한, AI 기반의 사운드 디자인 도구는 영 상 분위기에 맞춘 음악과 사운드 효과를 자동으로 생성할 수 있다. 본 연구는 현재 사용되고 있는 생성형 AI 기술을 조사하고, 특히 런웨이 AI 영화제에서 소개된 사례들을 통해 그 장점 과 한계를 분석한다. 연구 결과, 생성형 AI는 영상 제작에 드는 시간과 비용을 획기적으로 줄 일 수 있는 잠재력을 지닌 반면, 저작권 문제와 딥페이크와 같은 기술적, 윤리적 문제는 신중 한 고려가 필요함을 제시한다. 향후 연구 과제는 AI와 인간의 예술적 창의성 간의 균형을 유 지하는 방법에 관한 것이다.
The purpose of this study was to investigate how the English speaking ability of Korean EFL college students was affected by their interactions with Talk-to-ChatGPT while taking an ‘English Interview’ class. Thirty pieces of English conversation scripts with thirty chatbot conversations created by five students were collected for analysis. Two online text analysis programs, Quillbot including word counter and grammar checker and T.E.R.A.(Text Ease and Readability Assessor), were used for data analysis. The findings of data analysis revealed that 1) The average length of the sentences and words spoken by the participants has increased through English speaking practice using Talk-to-ChatGPT, and 2) There was no significant change in text ease and readability, and coherence of students’ utterances through English speaking practice using a chatbot while there were differences depending on their English proficiency levels. 3) Students A, B, and D, who had relatively low levels of English proficiency, showed a slight increase in syntactic accuracy and semantic clarity in their English interview practice. Based on the study findings, pedagogical implications for the effective use of AI-based apps or programs in English speaking classes were presented.
현대 사회에서 음악은 일상생활에 깊숙이 자리 잡아, 개인의 음악적 취향과 감정 상태에 맞는 콘텐츠를 손쉽게 찾고 소비하는 것이 중요해지고 있다. 콘텐츠 소비 증가와 더불어 제작 속도 및 효율 또한 중요한 요소로 부상하고 있다. 그러나 기존 음악 콘텐츠 제작 방식은 주로 기존 음악을 플레이리스트로 만들고 간단한 애니메이션이나 이미지를 영상으로 추가하는 방식이다. 이러한 한계를 극복하고자, 인공지능(AI) 기술을 활용하여 사용자 맞춤형 음악을 생성하고 콘 텐츠를 제공하는 어플리케이션을 개발하였다. AI 모델을 통해 사용자의 감정 상태를 분석하고, 이를 기반으로 음악적 요소를 최적화하여 개인화된 음악 콘텐츠를 생성하는 것에 목표를 두었 다. Mel-frequency cepstral coefficients(MFCC)와 템포 분석을 통해 음악 데이터의 특징을 추출하고, 이를 기반으로 사용자 감정에 부합하는 프롬프트를 생성하였다. 생성된 프롬프트는 MusicGen 모델에 입력되어, 사용자의 감정 상태와 음악적 취향을 반영한 새로운 음악을 생성 하는 데 활용하였다. 또한, ComfyUI를 활용하여 텍스트-이미지-비디오 변환 파이프라인을 구 축함으로써, 생성된 프롬프트를 기반으로 다양한 멀티미디어 콘텐츠 제작을 가능하게 하였다. 기존 음악 콘텐츠 제작 방식의 시간 및 비용 문제를 해결하고, 사용자에게 보다 정교하고 개 인화된 음악 경험을 제공하는 데 기여할 수 있을 것으로 기대된다. 향후 다양한 분야에서의 응용 가능성을 제시한다.
최근 급부상한 생성형 AI는 현실적인 이미지, 텍스트, 음악 및 가상 환경 등을 만들어내는 능력 에 기반하여 엔터테인먼트, 디자인, 의료 및 교육 분야 등 다양한 산업 분야에 근본적인 변화를 가 져올 혁신 동력으로서 주목받고 있다. 오픈AI 등을 중심으로 한 글로벌 빅테크 기업들은 막강한 자 본력을 바탕으로 이 분야의 기술의 고도화와 함께 산업 생태계를 빠르게 구축하며 선도적인 지위를 굳히고 있어 한국의 생성형 AI 산업의 국가경쟁력 강화가 시급하다고 할 수 있다. 본 연구는 국가 경쟁력을 설명하는 Porter의 다이아몬드 모형에 기반해 한국의 생성형 AI 경쟁력에 영향을 미치는 다양한 요인들을 분석하여 한국의 생성형 AI 산업의 성장과 혁신을 육성하기 위한 기업의 전략적 방안과 정부의 정책적 방향성을 다음과 같이 제시하였다. 연구 결과 생성형 AI 관련 기업들의 투자 활동이 응용프로그램 개발을 우선시하고 있는 것으로 나타나 정부는 근본적인 기술 혁신 분야에 R&D 지원에 나서야 함을 알 수 있었다. 또한 기업 사용자들의 생성형 AI 수요가 제한적임에 따라 다양한 관련 교육 프로그램을 개발하고 맞춤 솔루션을 제공해야하며 개인 사용자들간의 디지털 격 차를 해소하는 정책적 노력이 필요하다는 것을 보여주었다. 생성형 AI 유관 산업 육성을 위해, 기 술경쟁력 강화와 인재 육성이 필요하고, 이와 더불어 생성형 AI 산업 에코시스템 내의 기업간 협력 을 촉진하기 위해 정부의 역할이 중요하다는 것을 확인할 수 있었다.
무형문화재 분야는 AI 스마트 음성 대화 기술 활용에 중요한 분야 중 하나이다. AI 스마트 음성 대화 기술은 무형문화재의 계승과 보호에 기 술 지원을 제공하며 무형문화재의 보급과 촉진을 위한 새로운 방법을 제 공한다. 본 연구는 통합기술수용모형2(UTAUT2)와 기술준비도(TRI) 모형 을 기반으로 의인성 인지, 관계성 인지 변수를 도입하여 무형문화재 앱 AI 스마트 음성 대화 이용자 사용에 영향을 미치는 행동의 요인 탐색을 목적으로 한다. 이를 통해 무형문화재의 보급, 전시를 위한 이론적 근거 와 실천적 지침을 제공한다. 본 연구는 무형문화재 AI 스마트 음성 대화 앱을 사용하는 이용자의 행동에 영향을 미치는 요인을 정량적 데이터 분 석 방법으로 탐색한다. 연구 결과에 따르면 높은 노력 기대, 성과 기대, 촉진 조건, 사회적 영향, 쾌락적 동기, 혁신성, 낙관성 및 관계성 인지가 이용자의 사용 의도에 유의한 정(+)의 영향을 미친다. 궁극적으로 이용자 의 사용 행동에 영향을 미칠 수 있음을 증명한다. 반면 높은 불편감, 불 안감, 의인성 인지는 이용자의 사용 의도에 유의한 부(-)의 영향을 미치 고 이용자의 사용 행동을 자극하는 데 도움이 되지 않음을 증명한다. 또 한, 가격 가치는 사용 의도와 사용 행동에 유의한 영향을 미치지 않는다.
오늘날 교육 분야에서 인공지능 기술이 빠르게 발전하면서 AI 한국어 학습 앱은 혁신적인 학습 도구로 많은 주목을 받고 있다. 본 연구는 AI 한국어 학습 앱의 사용자를 연구 대상으로 삼아 기술준비도(TRI), 기술수 용모델(TAM), 정보기술성공 모형을 기반으로 양적 데이터를 분석했다. 본 연구 결과를 바탕으로 향후 한국어 학습 앱의 개발과 한국어 해외 교 육 연구를 위한 이론적 근거와 활용 방안을 제공하고 해외 한국어 교육 의 발전을 촉진하길 바란다. 연구 결과에 따르면 낙관성, 혁신성, 시스템 품질, 학습 내용, 지각된 유용성, 지각된 용이성이 사용자의 사용 태도와 사용의도에 정(+)적인 영향을 미친다. 반면에 불편함과 불확신은 사용자 의 지각된 용이성과 유용성에 부(-)적인 영향을 미친다. 특히, 사용자의 사용의도는 지각된 유용성으로부터 가장 큰 영향을 받았다. 이상의 연구 결론을 바탕으로 AI 한국어 학습 앱의 개선 대책 및 제언을 제시했다.
본 연구에서는 생성형 AI시대 부합하는 자기주도적 평생교육의 방안을 배움학적 관점으로 탐구하였다. 빠르게 변화하는 기술 환경 속에서 평생교육의 역할과 방향성을 재정립하는 데 기여하고자 하였다. 평생 교육의 새로운 패러다임인 배움에 대해 정리하고, 미래 사회에 요구되는 배움 역량을 개발하여, 지속가능 한 학습 생태계를 구축하는데 중요한 기초자료로 활용함을 목적으로 하였다. AI 시대 평생교육의 중요성 이 부각되고 있음에도 불구하고, 평생교육은 학습 패러다임에 머물러 있다. 특히, 평생교육은 주입식 학 습방식으로 인한 자기주도성이나 문제해결력 및 비판적 사고력이 부족하다고 지적되고 있다. 본 연구에서 는 평생교육의 패러다임을 평생배움의 관점으로 전환해야 한다고 제안한다. 배움은 삶이며, 삶이 배움이 다. 배움은 자기주도적인 활동으로 내부적으로 우러나와 하게 되는 것이다. 마지막으로 AI 시대 필요한 배 움역량으로 자기개조력, 자기치유력, 의식소통력을 강조하였다. 배움학적 관점은 주체를 학습자에 두고, 학습자가 자신의 학습 과정을 주도적으로 이끌며, 실생활과 연결된 다양한 역량을 개발할 수 있도록 지원 한다. 또한, 배움역량인 개조력, 치유력, 의식소통력을 통해 창의적 문제해결, 비판적 사고, 협업 능력을 강화할 수 있어, AI 시대의 빠른 변화에 적응하고 지속가능한 학습 생태계를 구축하는데 기여할 것이다.