본 연구는 발효 탐라오가피(fermented A. koreanum) 추출물의 유전독성을 연구하기 위하여, 미생물복귀돌연변이시험, 마우스 골수세포를 이용한 소핵시험, 염색체 이상시험을 연구하였다. 미생물복귀돌연변이 연구에서 발효 탐라오가피 추출물은 Salmonella typhimurium TA98, TA100, TA1535, TA1537와 Escherichia coli WP2uvrA에 대하여 대사활성계의 존재(+S-9 Mix) 및 부재(-S-9 Mix) 하에서 돌연변이 유도를 보이지 않았다. 또한, ICR 마우스를 이용한 소핵실험에서 발효 탐라오가피 추출물은 500, 1,000, 2,000 mg/kg 농도에서 MNPCE/2,000 PCE 와 PCE/200 RBC의 소핵형성을 유발하지 않았다. 한편, CHO-K1 세포를 이용한 염색체 이상실험에서 발효 탐라오가피 추출물은 대사활성계의 존재 6시간 처리군, 대사활성계 부재 6시간 처리군 및 대사활성계 부재 24시간 처리군에서 염색체 이상을 보이지 않았다. 따라서, 본 연구결과 발효 탐라오가피 추출물은 유전독성을 나타내지 않음을 알 수 있었다.
The cultivation methods of Acanthopanax in Korea need to be optimized. Hence, this study investigated the effect of different fertilizer ratios and planting dates on the growth and acanthoside D content of two (2) Acanthopanax species. The current recommended fertilizer rate of 10.5-8.5-8.5 kg/ha- (N-P2O5-K2O, respectively) produced the best plant growth of Acanthopanax. For the first year, the acanthoside D content resulting from the 2P (2x phosphate) rate was higher than that from the other fertilizer ratios, yet there were no significant differences resulting from the various treatments for either Acanthopanax divaricatus or Acanthopanax koreanum. Similarly, for the second year, there were no significant differences in the acanthoside D content resulting from the various fertilizer ratios, although for both species the acanthoside D content resulting from the 2P rate was slightly higher than that from the other treatments. Therefore, the results indicated that doubling the amount of phosphate increased the acanthoside D content. Plus, the optimum planting date with respect to growth and productivity for Acanthopanax divaricatus was identified as April 15.
The cultivation methods of Acanthopanax in Korea need to be optimized. Hence, this study investigated the effect of different fertilizer ratios and planting dates on the growth and acanthoside D content of two (2) Acanthopanax species. The current recommended fertilizer rate of 10.5-8.5-8.5 kg/ha- (N-P2O5-K2O, respectively) produced the best plant growth of Acanthopanax. For the first year, the acanthoside D content resulting from the 2P (2x phosphate) rate was higher than that from the other fertilizer ratios, yet there were no significant differences resulting from the various treatments for either Acanthopanax divaricatus or Acanthopanax koreanum. Similarly, for the second year, there were no significant differences in the acanthoside D content resulting from the various fertilizer ratios, although for both species the acanthoside D content resulting from the 2P rate was slightly higher than that from the other treatments. Therefore, the results indicated that doubling the amount of phosphate increased the acanthoside D content. Plus, the optimum planting date with respect to growth and productivity for Acanthopanax divaricatus was identified as April 15.
The cultivation methods of Acanthopanax in Korea need to be optimized. Hence, this study investigated the effect of different fertilizer ratios and planting dates on the growth and acanthoside D content of two (2) Acanthopanax species. The current recommended fertilizer rate of 10.5-8.5-8.5 kg/ha- (N-P2O5-K2O, respectively) produced the best plant growth of Acanthopanax. For the first year, the acanthoside D content resulting from the 2P (2x phosphate) rate was higher than that from the other fertilizer ratios, yet there were no significant differences resulting from the various treatments for either Acanthopanax divaricatus or Acanthopanax koreanum. Similarly, for the second year, there were no significant differences in the acanthoside D content resulting from the various fertilizer ratios, although for both species the acanthoside D content resulting from the 2P rate was slightly higher than that from the other treatments. Therefore, the results indicated that doubling the amount of phosphate increased the acanthoside D content. Plus, the optimum planting date with respect to growth and productivity for Acanthopanax divaricatus was identified as April 15.
The cultivation methods of Acanthopanax in Korea need to be optimized. Hence, this study investigated the effect of different fertilizer ratios and planting dates on the growth and acanthoside D content of two (2) Acanthopanax species. The current recommended fertilizer rate of 10.5-8.5-8.5 kg/ha- (N-P2O5-K2O, respectively) produced the best plant growth of Acanthopanax. For the first year, the acanthoside D content resulting from the 2P (2x phosphate) rate was higher than that from the other fertilizer ratios, yet there were no significant differences resulting from the various treatments for either Acanthopanax divaricatus or Acanthopanax koreanum. Similarly, for the second year, there were no significant differences in the acanthoside D content resulting from the various fertilizer ratios, although for both species the acanthoside D content resulting from the 2P rate was slightly higher than that from the other treatments. Therefore, the results indicated that doubling the amount of phosphate increased the acanthoside D content. Plus, the optimum planting date with respect to growth and productivity for Acanthopanax divaricatus was identified as April 15.
The cultivation methods of Acanthopanax in Korea need to be optimized. Hence, this study investigated the effect of different fertilizer ratios and planting dates on the growth and acanthoside D content of two (2) Acanthopanax species. The current recommended fertilizer rate of 10.5-8.5-8.5 kg/ha- (N-P2O5-K2O, respectively) produced the best plant growth of Acanthopanax. For the first year, the acanthoside D content resulting from the 2P (2x phosphate) rate was higher than that from the other fertilizer ratios, yet there were no significant differences resulting from the various treatments for either Acanthopanax divaricatus or Acanthopanax koreanum. Similarly, for the second year, there were no significant differences in the acanthoside D content resulting from the various fertilizer ratios, although for both species the acanthoside D content resulting from the 2P rate was slightly higher than that from the other treatments. Therefore, the results indicated that doubling the amount of phosphate increased the acanthoside D content. Plus, the optimum planting date with respect to growth and productivity for Acanthopanax divaricatus was identified as April 15.
본 연구는 섬오갈피 뿌리 추출물을 이용하여 돌연변이 유발을 관찰하기 위해 S. typhimurium TA100, TA98, TA1535, TA1537과 E. coli WP2 uvr A를 이용해 Ames test을 하였고 또한 S. typhimurium TA100, TA98을 이용한 항돌연변 이원 억제 시험을 시행하였다. Ames test에 필요한 시험물질들은 최고농도 결정을 통해 5000 μg/plate, 2500 μg/plate, 600 μg/plate의 시험물질을 양성대조군, 실험군, 음성대조군을 비대사활성계와 대사활성계로 나누어 시험을 시행하였다. 시험 결과 모든 농도에서는 집락군의 일관성 있는 증가는 보이지 않았고 이 점으로 미루어 보아 복귀돌연변이는 일어나지 않았고 음성으로 판정하였다. 항돌연변이원 시험에서는 양성물질의 농도결정과 시험물질의 최고농도결을 통해 양성대조군, 실험군, 음성대조군을 비대사활성계와 대사활성계로 시험을 하였고 시험결과 S. typhimurium TA100, TA98 두 균주 돌연변이 억제를 보였으며 TA98에서 더 높은 억제율을 보였다. 시험결과로 섬오갈피의 뿌리는 항돌 연변이 억제효과에 탁월한 효과가 있음을 시사하였다.
Acanthopanax species is known commonly as Siberian ginseng, touch-me-not, devil’s shrub, prickly eleutherococc, eleutherococc and wild pepper. A diverse group of chemical compounds isolated from Acanthopanax species was named ‘eleutherosides’. Among eleutherosides, eleutherosides B and E were widely known in Acanthopanax species. Acanthopanax species are cultivated and grow wild in a various area of Korea and have a variety of pharmacological effects. But, there are a lot of difficulties on producing excellent Acanthopanax species, according to the cultivated method is different pharmacological ingredients. This study, therefore, analyzed eleutherosides B and E in A. divaricatus and A. koreanum by different fertilizer ratio using HPLC. We will be investigated a high content of eleutherosides B and E by different fertilizer ratio and suggest an efficient fertilizer ratio of A. divaticatus and A. koreanum. All samples of A. divaricatus and A. koreanum were collected at Yeongcheon Agricultural Technology & Extension Center, Yeongcheon, Korea. The sample was prepared by upper and lower parts. The fertilizer ratio are N-P-K(10.5-8.5-8.5: 50 kg/10a), 2N-P-K (21-8.5-8.5: 50 kg/10a), N-2P-K (10.5-17-8.5: 50 kg/10a), N-P-2K (10.5-8.5-17: 50 kg/10a), and 2N-2P-2K (21-17-17: 50 kg/10a), respectively. To analyze eleutherosides B and E, 5 g of A. divaricatus and A. koreanum was extracted with 50% MeOH (3 × 100 ml) by reflux and evaporated in vacuo. The residue was dissolved in 1 ml of MeOH. The resulting solution was used for HPLC analysis. HPLC separation of eleutherosides B and E for qualitative and quantitative analysis was performed using a reverse phase system. A Discovery®C18 (4.6 × 250 mm, 5 μm) column was used with a mobile phase that consisted of water and acetonitrile. A gradient solvent system of water and acetonitrile (90:10 to 70:30 for 20 min) was used for the elution program. UV detection was conducted at 350 nm. The injection volume was 10 μl and the flow rate was 1 ml/min. All injections were performed in triplicate. The different fertilizer ratio yielded total eleutherosides B and E contents of 4.417-6.905 and 3.652-7.227 mg/g in the upper and lower parts of A. divaricatus, respectively. In A. koreanum, the total eleutherosides B and E contents were 4.591-10.108 and 3.834-9.079 mg/g in the upper and lower parts, respectively. The best conditions to increase eleutherosides B and E content in A. divaricatus was determined to be with N-2P-K fertilizer ratio, on the other hand, in A. koreanum was 2N-2P-2K fertilizer ratio.
This study was conducted to identify the effect of shading and pinching on growth and acanthoside-D content of Acanthopanax divaricatus var. albeofructus and A. koreanum Nakai. Different pinching heights showed no significant differences in terms of plant growth and acanthoside-D content but higher values showed that pinching A. divaricatus at 60 cm and A. koreanum at 30 cm favored good growth and higher fresh weight in the shoots. The content of acanthoside-D was not significantly affected by pinching heights. Also, no significant difference in acanthoside-D content was found between the lower and upper part of plant in the first year. However it was much higher in the lower part than the upper part in the second year, which indicated that the content of acanthoside-D was comparatively high in the lower part where lignification is much advanced. Shading showed benefits in terms of growth of A. divaricatus while only 50%-shading was favorable for A. koreanum to achieve superior growth. Overall, results indicated that shading had favorably affected the growth of the 2 Acanthopanax species while no-shading is better if we opt to achieve higher acathoside D content.
This study was conducted to enhance the propagation of Acanthopanax divaricatus and Acanthopanax koreanum through different cutting practices. For propagation by cuttings, scions were taken on September 1. This already has hard skin and showed much higher values in terms of root length, root number, rooting ratio and root weight than those taken on June 30 and August 1. Regardless of cutting date, 50% shading resulted to the highest root length, root number, root ratio and root weight. Meanwhile, 95% shading significantly reduced these parameters compared with no shading. These results suggest that over-shading may inhibit root growth. Two growth regulators, IBA (concentration of 1,000, 2,000, 3,000 ppm) and Rootone-F (0.4%) were also tested of its effect to the cuttings. Rootone-F was found to be more effective than IBA. Cutting treated with Rootone-F had slightly higher root length and root number. A. koreanum which grows well in hot climatic condition showed better rooting ability than A. divaricatus.
탐라오가피를 기능성 식품소재로 활용하기 위하여 물과 주정의 비율을 달리하여 추출시간에 따른 유용성분의 경시적 변화를 검토하였다. 물 및 주정농도를 각각 로 조절한 다음 0.5 cm 이하로 세절한 뿌리를 300 g/7.5 L의 비율로 첨가하여 9시간 동안 의 항온수조에서 환류냉각으로 추출하였을 때, 추출을 시작한 후 3시간까지 pH가 낮아졌으며, pH 범위였다. 색도 a값은 추출용매에 따라 차이가 있었으나, 추출 시간까지에 변화가 컸다. 색도
한국특산 섬오갈피나무 및 지리산오갈피나무의 잎과 줄기에서 추출한 주요 정유성분으로, 섬오갈피나무의 경우에는 δ-3-carene (31.34%), l-limonene (17.01%), β-elemene (4.53%), trans-p-menth-2-ene-1,8-diol (3.13%), 1,8-cineole (4.73%), 1-dodecen-3-yne (2.64%), (Z)-3,7-dimethyl-1,3,6-octatriene (3.21%), 지리산오갈피나무의 경우에는 delta-3-carene (14.78%), limonene (7.24%), t-ocimene (7.22%), α-terpinolene (8.76%), gamma-elemene (4.32%), β-selinene (7.72%), veridifloral (3.25%), dodecane (2.44%) 등의 성분함량이 높음을 알 수 있었다. 특히 δ-3-carene는 섬오갈피나무 및 지리산오갈피나무에서 가장 높은 함량을 나타내었다.
탐라오가피를 기능성 식품소재로 활용하기 위하여 물과 주정의 비율을 달리하여 추출시간에 따른 유용성분의 경시적 변화를 검토하였다. 물 및 주정농도를 각각 로 조절한 다음 0.5 cm 이하로 세절한 줄기를 300 g/7.5 L의 비율로 첨가하여 9시간 동안 를 유지하는 항온수조에서 환류냉각 추출하였다. 추출 중에 pH의 변화는 대체로 주정농도가 높을수록 높아지는 경향을 보였고, 추출 후 3시간까지 pH가 낮아졌으며 범위였다. 색도 a 값은 추출용매
제주특산 식물인 섬오갈피나무(Acanthopanax koreanum NAKAI)의 다량증식을 위하여 번식방법 및 유묘 생육 상황을 조사한 결과는 다음과 같다. 1. 종자는 15 에서 60일간 후숙시킨 다음 Kinetin 50ppm에서 24시간 침지후 5 에서 60일간 저온처리 하여 휴면타파한 것이 발아율 64%였다. 2. 녹지삽에서 호르몬 농도처리시 발근율은 IBA 100ppm에서 61.7%, NAA 50ppm에서 56.7%, IAA 100ppm에서 60.0%였다. 3. 녹지삽목에서 상토재료별 루톤 분의 처리 시 발근율은 송이+원예상토에서 76.7%, 비화산회토양에서 66.7%로 효과적 이었다. 4. 3월 30일 삽목하여 8월 10일 정식묘에서 활착율은 75%, 차광망 설치구에서 96%로 좋았으며 지상부 생육상황은 55% 차광망 설치구에서 좋았다. 5. 9월 30일 삽목하여 다음해 5월 2일 정식묘에서 활착율은 55% 차광망 설치구에서 91%로 좋았으며, 생육 및 수량성은 55% 차광망 설치구에서 양호하였다. 6. 전정부위에 따른 줄기 재생력은 지상 30cm 높이에서 전정한 것이 생육이 좋았다.
탐라오갈피 나무의 수확시기와 부위에 따른 eleutheroside 함량의 변화를 분석하였다. 9월에 수확한 탐라오갈피 나무의 부위별 eleutheroside B의 함량은 줄기에서 549.2 ppm으로 가장 높았고, 뿌리 및 잎에서는 각각 483.2 ppm, 255.9 ppm으로 잎에서 가장 낮은 함량을 나타내었다. eleutheroside E도 줄기에서 653.1 ppm으로 뿌리보다 높았으며, 잎에서는 검출되지 않아 잎에는 eleutherosid
두릅나무과 식물 6종의 잎으로부터 2개의 공통적인 superoxide dismutase(SOD) isoenzyme이 구분되었다. 이들 공통적인 isoenzyme(SOD 4와 SOD 6)의 패턴은 오갈피속 식물 중에서 민가시오갈피나무(A. senticosus for. inermis) 잎에서 가장 다양하였고, 그 활성은 섬오갈피나무(A. koreanum) 잎에서 가장 높았다. 그리고 SOD 4와 SOD 6은 H2O2와 KCN에 의한 선택적 저해로부터 각각 Fe-SOD와 CuZn-SOD인 것으로 밝혀졌다. 또한, SOD isoenzyme의 패턴은 섬오갈피나무의 성숙한 잎과 수피, 근피에서 차이가 없었으나 그 활성은 조직별로 차이가 나타났으며, Fe-SOD는 근피에서, CuZn-SOD은 잎에서 상대적으로 높게 나타났다. 그리고, CuZn-SOD나 Fe-SOD 모두 30-40℃에서 높은 활성 을 나타내었으나 그 이상의 온도에서는 활성이 저해되었다.
본 연구는 1997년 9월부터 1998년 8월까지 지리산과 한라산 일대에 분포하는 지리산오갈피군락과 섬오갈피 -곰솔군락 자생지의 생육특성과 식생을 조사하였다. 지리산오갈피군락은 지리산 노고단(1507m)과 반야봉 방향의 임걸령재(1300m)주변과 한라산 1100고지 주변에서 군락을 이루고 있었다. 구성종중 신갈나무, 오미자, 산수구, 당단풍, 관중, 노루삼, 산꿩의 다리,구상나무, 새 등이 상재도가 비교적 높게 나타났다. 지리산과 한라산지역에서 공동으로 출현한 종은 당단풍, 관중, 작살나무, 담쟁이덩굴, 고로쇠나무, 곰취, 애기나리, 졸방제비꽃, 이삭바꽃 등이 나타났다. 섬오갈피-곰솔군락은 제주도 외도 월태부락주변에서 소규모군락을 이루고 있었다. 이 지역에는 각시마, 사위질방, 으름, 실고사리 , 마삭줄, 계요등, 여우팥, 까마귀머루, 송악 등의 만경식물이 교목과 아교목층에 곰솔, 산팽나무, 예덕나무 등을 중심으로 혼생하고 있었다. 현재 본 조사지역에 더 이상 인위적인 변화가 일어나지 않는다면 이 지역에 분포하는 지리산오갈피는 구상나무-지리산오갈피군락으로 변화가 예상된다. 조사지역의 토양환경은 섬오갈피군락에서는 pH는 6.56, 전기전도도는 0.258mm ho/cm로 높고, 지리산오갈피군락에서는 유기물함량 25.16-25.35%와 총질소 7.58-9.30mg/g으로 높았다. 한라산과 지리산의 지리산오갈피군락에서는 한라산에서 pH 5.76, 전기전도도 0.238mmho/cm, 총질소 9.30mg/g, 총인 0.126mg/g으로 높게 나타났다.