In this study, a new model using artificial neural networks is proposed to improve the thickness error between the plates, which occurs when the rolling conditions change a lot during the thick rolling. The model was developed by using Python, and the input values are the change in the finish rolling temperature between the plates, the change in target tensile strength, the change in target thickness, and the change in rolling force. The new model is 31.76% better than the existing model based on the standard deviation value of the thickness error. This result is expected to reduce quality costs when applied to online models at actual production sites in the future.
새만금 내에서는 종종 식물플랑크톤이 증식하기에 알맞은 환경조건이 생성되며 일시에 식물플랑크톤 대증식이 발생하면서 조 류 관리기준을 초과하는 사례가 발생하고 있다. 이를 대비하기 위하여 과학적 예측기법을 토대로, 식물플랑크톤의 종별로 가장 효과적이 고 효율적인 녹조발생 억제 방안을 제안하기 위하여 식물플랑크톤 대증식 가능성을 예측하고, 제어할 수 있는 모델을 개발하였다. 즉, 하 천에서 유입하는 영양염(DIN, PO4-P)을 정책적으로 조절하고, 갑문운영을 통해 호 내 염분을 제어하는 것이다. 먼저 관측치로부터 인공신 경망 알고리즘을 이용해 식물플랑크톤 대증식 가능성을 예측 결과, 모델의 Kappa 수는 0.7889 ~ 1.0000의 범위로, good ~ excellent 수준이었 다. 다음으로 Garson 알고리즘을 이용하여 종별로 설명변수의 중요도를 평가하였고, 또한 DIN 및 염분 값의 변화에 따른 식물플랑크톤 대 량 증식 확률을 예측하였다. 그 결과, 각 종별로 식물플랑크톤의 대증식을 억제할 수 있는 DIN과 염분 농도를 정량적으로 예측할 수 있었 다. 따라서, 향후 새만금과 같은 거대한 인공 호수에서 식물플랑크톤의 대증식을 억제하기 위한 효율적이고 효과적인 대응방안을 마련할 수 있도록 녹조제어모델을 활용할 수 있을 것으로 판단된다.
본 논문에서는 3차원 엮임 재료의 재료 물성치들을 효율적으로 분석하고 추후 최적설계 연구에 활용하기 위해서 파라메트릭 배치 해석 워크플로우를 제시하였다. 3차원 엮임 재료를 구성하는 와이어들 사이의 간격을 설계 매개변수로 하는 파라메트릭 모델에 대해 서 임의의 변수 조합을 가지는 2,500개의 수치 모델을 생성하였으며, 상용 프로그램인 매트랩과 앤시스의 여러 모듈을 사용하여 체적 탄성계수, 열전도도, 유체투과율과 같은 다양한 재료 물성치들을 배치 해석을 통해서 자동으로 얻어질 수 있도록 구성하였다. 이와 같 이 얻어진 대용량의 재료 물성치 데이터베이스를 활용해서 회귀 분석을 수행하였으며, 그 결과 설계 변수들과 재료 물성치 사이의 경 향성과 수치 해석 결과의 정확도를 검증하였다. 또한 확보된 데이터베이스를 통해서 3차원 엮임 재료의 물성치를 예측할 수 있는 인 공 신경망을 구성하고 학습시켰으며, 그 결과 임의의 설계 매개변수 값들을 가지는 엮임 재료 모델에 대해서 구조 및 유체해석 과정 없 이도 높은 정확도로 재료 물성치들을 추정할 수 있음을 확인하였다.
In this study, based on the saturation magnetic flux density experimental values (Bs) of 622 Fe-based bulk metallic glasses (BMGs), regression models were applied to predict Bs using artificial neural networks (ANN), and prediction performance was evaluated. Model performance evaluation was investigated by using the F1 score together with the coefficient of determination (R2 score), which is mainly used in regression models. The coefficient of determination can be used as a performance indicator, since it shows the predicted results of the saturation magnetic flux density of full material datasets in a balanced way. However, the BMG alloy contains iron and requires a high saturation magnetic flux density to have excellent applicability as a soft magnetic material, and in this study F1 score was used as a performance indicator to better predict Bs above the threshold value of Bs (1.4 T). After obtaining two ANN models optimized for the R2 and F1 score conditions, respectively, their prediction performance was compared for the test data. As a case study to evaluate the prediction performance, new Fe-based BMG datasets that were not included in the training and test datasets were predicted using the two ANN models. The results showed that the model with an excellent F1 score achieved a more accurate prediction for a material with a high saturation magnetic flux density.
The buffer is a critical barrier component in an engineered barrier system, and its purpose is to prevent potential radionuclides from leaking out from a damaged canister by filling the void in the repository. No experimental parameters exist that can describe the buffer expansion phenomenon when Kyeongju bentonite, which is a buffer candidate material available in Korea, is exposed to groundwater. As conventional experiments to determine these parameters are time consuming and complicated, simple swelling pressure tests, numerical modeling, and machine learning are used in this study to obtain the parameters required to establish a numerical model that can simulate swelling. Swelling tests conducted using Kyeongju bentonite are emulated using the COMSOL Multiphysics numerical analysis tool. Relationships between the swelling phenomenon and mechanical parameters are determined via an artificial neural network. Subsequently, by inputting the swelling tests results into the network, the values for the mechanical parameters of Kyeongju bentonite are obtained. Sensitivity analysis is performed to identify the influential parameters. Results of the numerical analysis based on the identified mechanical parameters are consistent with the experimental values.
This ammonia prediction study was performed using the time-series artificial neural network model, Long-short term memory (LSTM), after long-term monitoring of ammonia and environmental factors (ventilation rate (V), temperature (T), humidity (RH)) from a slurry finishing pig farm on mechanical ventilation system. The difference with the actual ammonia concentration was compared through prediction of the last three days of the entire breeding period. As a result of the analysis, the model which had a low correlation (ammonia concentration and humidity) was confirmed to have less error values than the models that did not. In addition, the combination of two or more input values [V, RH] and [T, V, RH] showed the lowest error value. In this study, the sustainability period of the model trained by multivariate input values was analyzed for about two days. In addition, [T, V, RH] showed the highest predictive performance with regard to the actual time of the occurrence of peak concentration compared to other models . These results can be useful in providing highly reliable information to livestock farmers regarding the management of concentrations through artificial neural network-based prediction models.
본 논문에서는 전산구조 해석 데이터를 기반으로 인공 신경망을 활용하여 헬리데크 구조물에 대한 손상 추정 기법을 제안하였다. 헬리데크를 구성하는 트러스와 서포트 부재들에 대해서 절점을 공유하는 부재들을 70개의 모델로 그룹화 하였으며, 최대 3가지 부재 그룹에 무작위로 손상을 부여하여 총 37,400개의 손상 시나리오를 생성하였다. 이들 각각에 대해서 구조 해석 프로그램을 통해 모드 해석을 수행하였으며, 전체 손상 시나리오를 사용 목적에 따라 학습, 유효성 검사, 그리고 검증 시나리오로 분리하였다. 헬리데크의 손상 및 비손상 상태의 동적 응답 특성에 대한 패턴 인식을 위해 PyTorch 프로그램을 활용하여 3개의 은닉층을 가지는 인공 신경망을 구성하였으며, 이에 대해서 다양한 손상 시나리오를 반복 학습함으로써 손실 함수를 최소로 하는 인공 신경망을 도출하였다. 최종적으로 총 400개의 검증 시나리오에 대해서 인공 신경망이 추정한 손상률과 실제 부여된 손상률을 비교하였으며, 그 결과 본 연구를 통해 얻어진 인공 신경망이 손상 부재의 위치와 손상 정도를 매우 높은 정확도로 예측하는 것을 확인하였다.
본 연구에서는 인공신경망을 이용해 건물 구조물의 가속도계 설치 위치 및 개수를 선정하는 방법을 제안한다. 인공신경망의 입력 층에는 층에 설치되는 가속도계로부터 얻는 가속도이력데이터가 입력되며, 출력층에는 구조물을 정의하는 각 층의 질량과 강성 값을 출력하도록 신경망을 구성한다. 가속도계의 설치 위치 및 개수를 선정하기 위해 여러 설치 시나리오를 가정하고 훈련을 통해 인공신경망을 구한다. 훈련에 사용되지 않은 예제를 이용해 예측 성능을 비교하였다. 센서 개수 및 위치에 따른 예측 성능을 비교하여 설치위치 및 개수를 선정한다. 6층과 10층 예제 적용을 통해 제안하는 방법을 검증하였다.
가뭄은 일반적으로 장기간에 걸쳐 물 공급이 부족하여 나타나는 환경 재앙 중 하나로 대부분 넓은 지역에 걸쳐 나타난다. 원격탐사 자료는 이러한 넓은 지역에서 나타나는 가뭄 모니터링에 적합한 방법이다. 따라서 이 연구에서는 강원도 소양호 지역의 Landsat 위성 영상 자료를 활용하여 약 30년(1985-2015) 동안의 소양호 면적을 산출하고 이를 가뭄 패턴과 분석하였다. 특히 ISODATA, Maximum likelihood 및 인공신경망을 활용하여 Landsat 영상을 분류하여 소양호 면적을 산출하였다. 또한 가뭄 패턴을 분석하기 위하여 산출된 호수 면적과 소양호 지역의 강수량을 활용한 표준 강수지수(Standardized Precipitation Index: SPI)와의 상관관계를 분석하였다. 영상 분류 연구 결과, ISODATA, Maximum likelihood 및 인공신경망 방법 중에서 호수 면적 산출의 최적의 방법은 인공신경망 방법임을 알 수 있었다. 또한, 인공신경망 방법을 적용하여 산출한 호수 면적과 SPI와의 상관관계 분석 결과 R 2 값이 0.52를 가진다. 즉, SPI 지수가 낮을 때 호수 면적이 감소하는 것을 알 수 있었다. 즉 호수 면적 변화를 통하여 소양호 지역의 가뭄 상태 감지 및 모니터링이 가능하다는 것을 알 수 있었다. 이 연구는 향후 지역 가뭄 모니터링 프로그램 개발 등에 사용이 가능할 것이다.
이 연구의 목적은 인공신경망 기법을 이용하여 사면의 내진 성능을 비교적 정확하면서도 효율적으로 예측하는 모델을 도 출하는데 있다. 사면의 내진 성능은 지진입력 및 사면모델의 무작위성 및 불확실성으로 인하여 정량화하기 쉽지 않다. 이러한 배경 아래 사면에 대한 확률론적 지진 취약도 분석이 몇몇 연구자에 의해 수행되었고, 이를 기반으로 다중 선형회귀분석 을 통하여 사면 내진성능에 대한 닫힌식이 제안된 바 있다. 그러나 전통적인 통계학적 선형회귀분석은 다양한 조건의 사면과 이에 따른 내진 성능 사이의 비선형적 관계를 정확하게 표현하지 못하는 한계를 보였다. 이에 따라 본 연구에서는 이러한 문제점을 극복하고자 인공신경망 기법을 사면 내진성능 예측 모델을 생성하는데 적용하였다. 도출된 모델의 유효성은 기존 의 다중 선형 및 다중 비선형 회귀분석을 통한 모델과 비교하여 검증하였다. 결과적으로 이전 연구의 전통적인 통계학적 회귀 분석을 통한 모델과 비교 결과, 기본적으로 인공신경망 기법을 통하여 도출된 모델이 사면의 내진성능을 예측하는데 있어 우수한 성능을 보여주었다. 이러한 정확도 높은 모델은 향후 확률에 기반한 사면의 지진취약도 지도를 개발하고, 주요 구 조물의 인근 사면으로 인한 리스크를 효과적으로 평가하는데 활용될 수 있을 것이라 기대된다.
광도, 포차와 같은 환경요인과 엽면적 지수와 같은 생육요인은 증산 속도를 변화시키는 중요한 변수이다. 본 연구에서는 Penman-Monteith의 증산 모델과 인공신경망 (ANN)에 학습에 의한 증산속도 추정값을 비교하는 것을 목표로 하였다. 파프리카(Capsicum annuum L. cv. Fiesta)의 증산속도 추정은 로드셀을 이용한 배지의 중량 변화를 통해 계산하였다. 온도, 상대습도, 배지 중량 데이터는 1분 단위로 2개월간 수집하였다. 증산량은 일차식으로는 정확한 추정이 어렵기 때문에, 기존의 Penman-Monteith식에 보정 광도를 사용한 수정식 Shin 등(2014)을 사용하였다. 이와는 별개로 ANN을 사용하여 증산량을 추정 비교하였다. 이를 위하여 광도, 온도, 습도, 엽면적지수, 시간을 사용한 입력층과 5개의 은닉층으로 구성된 ANN을 구축하였다. 각 은닉층의 퍼셉트론 개수는 가장 정확성이 높은 512개로 하였다. 검증 결과, 보정된 Penman-Monteith 모델식의 R2 = 0.82이었고, ANN의 R2 = 0.94로 나타났다. 따라서 ANN은 일반적인 모델식에 비해 정확한 증산량 추정이 가능한 것으로 나타났고, 추후 수경재배의 효율적인 관수전략 수립에 있어 적용 가능할 것으로 판단되었다.
최근 국내외에서는 수질안정성 향상 및 부지면적 저감을 위해 막여과 공정도입이 활발한 추세이며 특히, 정수처리 분야에서는 정밀여과(Microfiltration) 및 한외여과(Ultrafiltration) 공정이 많이 적용되고 있다. 막여과 공정의 경제성 향상을 위해서는 세정 시점의 예측 및 세정 주기 연장이 매우 중요한 요소이다. 따라서, 본 연구에서는 인공신경망(Artificial neural network)을 활용하여 UF 공정차압(Transmembrane pressure) 예측 모델을 개발하고자 한다. 입력변수로는 유입수 온도, pH, 탁도 등의 일평균값을 이용하였다.