본 연구는 케일(Brassica oleracea L. var. acephala)의 노지 재배 시, 생육 초기에 노출될 수 있는 건조 스트레스 조건에서 Glutamate (Glu)의 스트레스 경감 및 생육 회복 효과를 구명하기 위해 실시하였다. 건조 조건(D)에 노출된 케일에 5㎛ Glu 용액을 경엽처리하였다(D+Glu). Glu 처리 전 및 처리 후 4, 8일 차(0, 4, 8DAT)의 생육과 엽록소 함량을 측정하고 식물 체내의 ABA와 Glu, Pro의 함량을 분석하여 정상 환경 및 D, D+Glu 처리구 간의 비교를 실시하였다. 엽록소 함량의 경우, 8DAT에서 D+Glu 처리구는 일정한 수준을 유지한 반면에, D처리구는 14% 감소하였다. 엽면적으로 대표되는 생장 또한 D+Glu 처리구가 D 처리구에 비해 높게 나타났다. 또한 4, 8일차의 ABA 함량이 D 처리구에서 D+Glu 처리구에 비해 44.13, 49.18% 높게 나타났으며, 체내 아미노산 대사 및 건조저항성 지표인 Glu, Pro 함량은 D 처리구에 비해 D+Glu 처리구에서 보다 높은 수준을 유지하였다. 이러한 결과를 통해, Glu 처리에 의해 건조 스트레스가 경감되고 생육이 회복될 수 있다고 판단된다.
본 연구는 새만금 간척지에서 비닐하우스 작물 재배 가능성 검토를 위해 녹색꽃양배추를 대상으로 일일 관수량을 달리하여 관수량에 따른 토양 염농도 및 생육특성 등을 조사하여 관수량에 의한 재염화 억제효과를 알아보고자 수행하였다. 수확기의 표토의 평균 토양 EC 는 1.5 및 3.0mm·day-1 처리구에서 각각 10.9 및 11.5dS·m-1 였으며 6.0mm·day-1 처리구에서 5.1dS·m-1로 1.5 및 3.0mm·day-1 처리구보다 52~56% 낮게 나타나 점적관수 량에 따른 제염효과를 확인할 수 있었다. 화뢰의 무게는 6.0mm·day-1 처리구에서 주당 371.3g으로 1.5 및 3.0mm·day-1 처리구의 60.9g 및 129.1g보다 높은 값을 나타냈다. 50%의 수량감소를 보이는 토양 EC는 7.6dS·m-1였으며 점적관수에 의한 토양 제염효과는 6.0mm·day-1 처리에서 30~40cm 깊이까지 나타났다. 따라서 새만금간척지에서 녹색꽃양배추 재배시 점적관수에 의한 토양 재염화 억제를 위해서는 6.0mm·day-1 수준의 관수량으로 총 422mm의 물량이 필요할 것으로 예측된다. 그러나 염류의 이동은 토양 이화학적 특성 및 계절적 요인 등 여러 가지 환경요인에 영향을 받으므로 간척지 비닐하우스에서 점적관수에 따른 염류의 이동특성에 관한 추가적인 연구가 필요할 것으로 판단된다.
잎브로콜리에 심각한 피해를 주는 배추좀나방의 적절한 방제시기 설정을 위한 기초자료로 이용하기 위하여 유충접종밀도와 잎브로콜리 피 해량의 관계를 분석하여 경제적피해허용수준과 요방제 수준을 설정한 결과는 다음과 같다. 배추좀나방 3~4령 유충을 주당 0, 0.5, 1.0, 1.5, 2.0 마리를 5월 24일에 접종하고, 6월 1일, 6월 9일, 6월 18일에 발생밀도와 엽수량을 조사한 결과, 초기 접종밀도가 증가할수록 배추좀나방의 발생 밀도는 증가하였고 시간이 경과할수록 엽수량은 감소하였다. 이를 토대로 배추좀나방의 접종밀도와 수량감소율을 회귀식을 이용하여 분석한 결 과 y=1636-394x (R 2 =0.79***)로 추정되었다. 잎브로콜리에서 5% 피해율을 경제적 피해한도로 볼 때 배추좀나방의 경제적피해허용수준은 10 주당 2~3마리이고, 요방제 수준은 10주당 1-2마리 수준으로 추정된다.
This study was conducted to develop economic injury level (EIL) and economic threshold (ET) of Cabbage armyworm, Mamestra brassicae L. on cabbage (Brassica oleracea L. var). The changes of cabbage biomass and M. brassicae density were investigated after introduction of larval M. brassicae (2nd instar) at different densities: 0, 1, 2, 4, 8, and 16 larvae per plant at 40 d after planting for an open field experiment, and 0, 2, 5, 8 and 12 larvae per plant at 25 d after planting for a glass house experiment. In the field experiment, the yield loss of cabbage was not significantly different among treated-plots at 30 d after the larval introduction, showing an over-compensatory response of cabbage plants to M. brassicae attack. In the glasshouse experiment, however, the biomass of cabbage at 15 d after the larval introduction significantly decreased with increasing the initial introduced number of M. brassicae, resulting in 38.3, 36.7, 21.7, 23.3 and 16.7g in above treated-plots, respectively. The relationship between cumulative insect days (CID) and yield loss (%) of cabbage was well described by a nonlinear logistic equation. Using the estimated equation, EIL of M. brassicae on cabbage was estimated at 44 CID per plant based on the yield loss 14%, which take into account of an empirical gain threshold 5% and marketable rate 91% of cabbage. Also, ET was calculated at 80% of the EIL: 35 CID per plant. Until a more elaborate EIL-model is developed, the present result may be useful for M. brassicae management at early growth stage of cabbage.
This study was conducted to develop the economic threshold for the diamondback moth (Plutella xylostella (L.) on Leaf Broccoli (leaf vegetable) in 2007. To investigate the relationship between initial density of diamondback moth larvae and broccoli leaf yield, experimental plots with five treatments (0, 0.5, 1.0, 2.0, 4.0 larvae per plant) as initial density were established. We inoculated larvae in chesses cloth covering to survey larvae density change. When grown to eat, leaves of broccoli were harvested by periods. 60-70% of larvae were removed whenever we picked the leaves. High levels of larvae were associated with significant reductions in leaf yield. There were 85%, 64%, 58%, and 56% yield reductions from the diamond back moth larvae density in 0, 0.5, 1,0, 1.5, 2.0 per plant, respectively 25days after larvae inoculation. The regression equation used to predict leaf yield based on the number of initial larvae density per a plant was y=1635-393x(R2=0.79***). The economic injury level of diamondback moth on leaf broccoli was 2-3 larvae per 10 plants for a damage level of 5%. The economic thresholds was 1-2 larvae per 10 plants. Thus, the diamond back moth management should be initiated 1-2 larvae occurrence per plant.
Alcoholic fatty liver disorder has become a frequent health concern worldwide. To investigate the effects of Brassica oleracea (B. oleracea) sprout extract (BOE), the present study was designed with alcoholic fatty liver in the rat. Initially, the effects of BOE on liver parameters were examined. Male rats were divided into five groups. The normal control group was fed the normal diet, and the BOE group was fed the high fat diet and ethanol with/without BOE for 4 weeks. After 4 weeks feeding period, rats were sacrificed and their livers and blood were used for fatty liver-related biomarkers analyses. As a result, BOE ameliorated fatty liver-related enzymes profiles in liver tissues and also reduced blood alcohol concentration in rat model. We demonstrated that BOE protected the high fat diet and alcohol-induced fatty liver in rat model. Furthermore, BOE increased detoxificative abilities against alcohol.
Cabbage head splitting can greatly affect both the quality and commercial value of cabbage (Brassica oleracea). To detect the genetic basis of head-splitting resistance, a genetic map was constructed using an F2 population derived by crossing “748” (head-splitting-resistant inbred line) and “747” (head-splitting-susceptible inbred line). The map spans 830.9cM and comprises 270 markers distributed in nine linkage groups, which correspond to the nine chromosomes of B. oleracea. The average distance between adjacent markers was 3.6cM. A total of six quantitative trait loci (QTLs) conferring resistance to head splittingwere detected in chromosome 2, 4, and 6. Two QTLs, SPL-2-1 and SPL-4-1, on chromosomes 2 and 4, respectively, were detected in the experiments over 2 years, suggesting that these two potential loci were important for governing the head-splitting resistance trait. Markers BRPGM0676 and BRMS137, which were tightly linked with head-splitting resistance, were detected in the conserved QTL SPL-2-1 region using bulked segregant analysis. Synteny analysis showed that SPL-2-1 was anchored to a 3.18Mb genomic region of the B. oleracea genome, homologous to crucifer ancestral karyotype E block in chromosome 1 of Arabidopsis thaliana. Moreover, using a field emission scanning electron microscope, significant differences were observed between the two parental lines in terms of cell structures. Line “747” had thinner cell wall, lower cell density, larger cell size, and anomalous cell wall structure compared with the resistant line “748”. The different cell structures can provide a cytological base for assessing cabbage head splitting.
Blackleg disease caused by Leptosphaeria maculans, is the most devastating disease of Brassica germplam worldwide that causes million tonnes of crop losses per year throughout the world. To date, a total of 12 race-specific resistance genes of Brassica napus to L. maculans have been reported but linkage mapping analysis reveals that all of those loci are located in A genome i.e., in B. rapa chromosomes. B. oleracea has high ancestral synteny with B. rapa through their evolution. We believe that presence of qualitative resistance is possible in B. oleracea germplasm. The present study was therefore planned to find out any race-specific qualitative resistance gene present in C genome of B. oleracea. A total of 16 microsatellite markers were used which are linked to seven different Rlm and Lep genes of B. napus to screen 32 inbred lines of cabbage. Primers were designed based on homology assessment in corresponding nucleotide sequence available in Bolbase (a B. oleracea genome database, http://www.ocri-genomics.org/bolbase/index.html), located in B. oleracea scaffolds/chromosomes. Out of 16 SSR markers, 13 were found polymorphic which indicates possible existence of resistant genes in cabbage lines. The inbred lines are then assessed against two L. maculans stains with known avirulent genes. Some inbred lines were hypersensitive against gene-specific virulent strains of L. maculans that confirmed existence of Rlm1, Rlm2, Rlm4, LepR3 and LepR4 in the cabbage lines. In this way we were able to select out resistant and susceptible lines against each resistant gene. The gene-specific polymorphic SSR marker regions were cloned and sequenced and candidate SNPs were identified for confirmation of their functionality.
Total phenol, flavonoid and antioxidant components of cabbage leaf samples derived from different cultivar were determined. Total phenol compound content showed the highest amount in methanol extracts from ‘YR Howol’ cultivar (11.72 ㎎/g), followed by ‘Harutame’ (10.66㎎/g), ‘Winstar’ (10.34 ㎎/g) and YR Hero (10.20 ㎎/g). The highest amount of total flavonoid content was observed from the methanol extracts of Harutame (5.39 ㎎/g), followed by Winstar (4.28 ㎎/g), Wialhowol (4.10 ㎎/g). The SOD enzyme activity showed a high activity of ‘YR Hogeo’ cultivar, and the cultivar of ‘YR Howol’ cultivar showed the lowest activity of SOD. The activity of CAT and APX showed higher values ‘Ogane’ and ‘YR Hogeol’ cultivars than the other cultivars. The POD activities showed relatively high values ‘Ogane’ and ‘YR Howol’ cultivars compared with other cultivars. The free radical (DPPH) scavenging activity showed lower IC50 values of ‘Harutame’ (15.71) and ‘YR Howol’ cultivar (16.88), however methanol extract of ‘YR Hero’ cultivar (22.49) being the highest. The extracts of all cabbage cultivars in the reaction solution of pH 1.2 could be decomposed nitrite more than 50%. Especially, the cultivar ‘YR Hogeol’ and ‘Ogane’ showed a relatively high nitrite scavenging activity for each 60.13% and 57.20% respectively. The IC50 values of antioxidant activity determined by ABTS were lower in ‘Harutame’ (17.04) and ‘YR Howol’ cultivar (17.97), and its results observed similar with values obtained from the same extracts by DPPH method. The result of this study suggests that the methanol extract of Brassica oleracea L. contains the high amount of phenolic and higher radical scavenging activities.
This research was carried out to study the effect of mulching materials and weed control methods on weed occurrence and growth of kale on upland and paddy soil of field culture at spring and autumn season. Paddy soil temperature of mulching treatments was high by 0.9~2.0℃ in comparison of non-mulching at autumn season. The control value of weed was over 91% at mulch paper and time required for weed control was reduced by 70% at mulch paper + machine weeding in comparison of non-mulching + hand weeding. The yield of kale was similar to that of conventional culture. Paddy soil temperature of mulch paper was higher on April, but lower on May and June than non-mulching at spring season. Dominant weed was Chenopodium album var. centrorubrum Makino, The control value of weed was over 91% at mulch paper, time required for weed control was reduced by 75% at mulch paper + machine weeding in comparison of non-mulching + hand weeding and the yield of kale increased by 34% than conventional culture. Dominant weed was Alopecurus aequalis var. amurensis Ohwi. on paddy soil at autumn season. The control value of weed was 43% at mulch paper. Time required for weed control was reduced by 80% at mulch paper + machine weeding in comparison of non-mulching + hand weeding. The yield of kale increased by 26% compared with than of conventional culture.
This study was carried out to investigate seed germination and seedling of cabbage and sugar beet in four treatments of salinity including 0 (control), 0.5, 1.0 and 1.5% NaCl. The results showed that different treatments of salinity had considerable effects on the germination and root and shoot length of cabbage and sugar beet. Percent of germination in both species showed significant decrease with increasing salinity up to 1.5% NaCl. This decrease was more evident in cabbage when compared to sugar beet. The required time for germination increased with high levels of salinity. The seedling growth of both species were inhibited by all salinity levels. Particularly at 1.0 and 1.5% NaCl, no measurable length was observed in cabbage and sugar beet. At 0.5% NaCl root growth of both plant species was more affected as compared to shoot growth by salinity.