검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 23

        1.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Continuous synthesis of high-crystalline carbon nanotubes (CNTs) is achieved by reconfiguring the injection part in the reactor that is used in the floating catalyst chemical vapor deposition (FC-CVD) process. The degree of gas mixing is divided into three cases by adjusting the configuration of the injection part: Case 1: most-delayed gas mixing (reference experiment), Case 2: earlier gas mixing than Case 1, Case 3: earliest gas mixing. The optimal synthesis condition is obtained using design of experiment (DOE) in the design of Case 1, and then is applied to the other cases to compare the synthesis results. In all cases, the experiments are performed by varying the timing of gas mixing while keeping the synthesis conditions constant. Production rate (Case 1: 0.63 mg/min, Case 2: 0.68 mg/min, Case 3: 1.29 mg/min) and carbon content (Case 1: 39.6 wt%, Case 2: 57.1 wt%, Case 3: 71.6 wt%) increase as the gas-mixing level increases. The amount of by-products decreases stepwise as the gas-mixing level increases. The IG/ID ratio increases by a factor of 7 from 10.3 (Case 1) to 71.7 (Case 3) as the gas-mixing level increases; a high ratio indicates high-crystalline CNTs. The radial breathing mode (RBM) peak of Raman spectrograph is the narrowest and sharpest in Case 3; this result suggests that the diameter of the synthesized CNTs is the most uniform in Case 3. This study demonstrates the importance of configuration of the injection part of the reactor for CNT synthesis using FC-CVD.
        4,000원
        2.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, an empirical relationship between the energy band gap of multi-walled carbon nanotubes (MWCNTs) and synthesis parameters in a chemical vapor deposition (CVD) reactor using factorial design of experiment was established. A bimetallic (Fe-Ni) catalyst supported on CaCO3 was synthesized via wet impregnation technique and used for MWCNT growth. The effects of synthesis parameters such as temperature, time, acetylene flow rate, and argon carrier gas flow rate on the MWCNTs energy gap, yield, and aspect ratio were investigated. The as-prepared supported bimetallic catalyst and the MWCNTs were characterized for their morphologies, microstructures, elemental composition, thermal profiles and surface areas by high-resolution scanning electron microscope, high resolution transmission electron microscope, energy dispersive X-ray spectroscopy, thermal gravimetry analysis and Brunauer-Emmett-Teller. A regression model was developed to establish the relationship between band gap energy, MWCNTs yield and aspect ratio. The results revealed that the optimum conditions to obtain high yield and quality MWCNTs of 159.9% were: temperature (700ºC), time (55 min), argon flow rate (230.37 mL min–1) and acetylene flow rate (150 mL min–1) respectively. The developed regression models demonstrated that the estimated values for the three response variables; energy gap, yield and aspect ratio, were 0.246 eV, 557.64 and 0.82. The regression models showed that the energy band gap, yield, and aspect ratio of the MWCNTs were largely influenced by the synthesis parameters and can be controlled in a CVD reactor.
        4,000원
        3.
        2015.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, titanium(Ti) meshes and porous bodies are employed to synthesize carbon nanotubes(CNTs) using methane(CH4) gas and camphene solution, respectively, by chemical vapor deposition. Camphene is impregnated into Ti porous bodies prior to heating in a furnace. Various microscopic and spectroscopic techniques are utilized to analyze CNTs. It is found that CNTs are more densely and homogeneously populated on the camphene impregnated Ti-porous bodies as compared to CNTs synthesized with methane on Ti-porous bodies. It is elucidated that, when synthesized with methane, few CNTs are formed inside of Ti porous bodies due to methane supply limited by internal structures of Ti porous bodies. Ti-meshes and porous bodies are found to be multi-walled with high degree of structural disorders. These CNTs are expected to be utilized as catalyst supports in catalytic filters and purification systems.
        4,000원
        4.
        2013.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We investigated the effects of parametric synthesis conditions of catalysts such as sintering temperature, sorts of supports and compositions of catalysts on alignment and length-control of carbon nanotubes (CNTs) using catalyst powders. To obtain aligned CNTs, several parameters were changed such as amount of citric acid, calcination temperature of catalysts, and the sorts of supports using the combustion method as well as to prepare catalyst. CNTs with different lengths were synthesized as portions of molybdenum and iron using a chemical vapor deposition reactor. In this work, the mechanisms of alignment of CNTs and of the length-control of CNTs are discussed.
        4,000원
        5.
        2012.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We present a method of graphene synthesis with high thickness uniformity using the thermal chemical vapor deposition (TCVD) technique; we demonstrate its application to a grid supporting membrane using transmission electron microscope (TEM) observation, particularly for nanomaterials that have smaller dimensions than the pitch of commercial grid mesh. Graphene was synthesized on electron-beam-evaporated Ni catalytic thin films. Methane and hydrogen gases were used as carbon feedstock and dilution gas, respectively. The effects of synthesis temperature and flow rate of feedstock on graphene structures have been investigated. The most effective condition for large area growth synthesis and high thickness uniformity was found to be 1000˚C and 5 sccm of methane. Among the various applications of the synthesized graphenes, their use as a supporting membrane of a TEM grid has been demonstrated; such a grid is useful for high resolution TEM imaging of nanoscale materials because it preserves the same focal plane over the whole grid mesh. After the graphene synthesis, we were able successfully to transfer the graphenes from the Ni substrates to the TEM grid without a polymeric mediator, so that we were able to preserve the clean surface of the as-synthesized graphene. Then, a drop of carbon nanotube (CNT) suspension was deposited onto the graphene-covered TEM grid. Finally, we performed high resolution TEM observation and obtained clear image of the carbon nanotubes, which were deposited on the graphene supporting membrane.
        4,000원
        6.
        2010.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        TiO2 nanowires were self-catalytically synthesized on bare Si(100) substrates using metallorganic chemical vapor deposition. The nanowire formation was critically affected by growth temperature. The TiO2 nanowires were grown at a high density on Si(100) at 510˚C, which is near the complete decomposition temperature (527˚C) of the Ti precursor (Ti(O-iPr)2(dpm)2). At 470˚C, only very thin (< 0.1μm) TiO2 film was formed because the Ti precursor was not completely decomposed. When growth temperature was increased to 550˚C and 670˚C, the nanowire formation was also significantly suppressed. A vaporsolid (V-S) growth mechanism excluding a liquid phase appeared to control the nanowire formation. The TiO2 nanowire growth seemed to be activated by carbon, which was supplied by decomposition of the Ti precursor. The TiO2 nanowire density was increased with increased growth pressure in the range of 1.2 to 10 torr. In addition, the nanowire formation was enhanced by using Au and Pt catalysts, which seem to act as catalysts for oxidation. The nanowires consisted of well-aligned ~20-30 nm size rutile and anatase nanocrystallines. This MOCVD synthesis technique is unique and efficient to self-catalytically grow TiO2 nanowires, which hold significant promise for various photocatalysis and solar cell applications.
        4,000원
        7.
        2009.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Graphene has been effectively synthesized on Ni/SiO2/Si substrates with CH4 (1 SCCM) diluted in Ar/H2(10%) (99 SCCM) by using an inductively-coupled plasma-enhanced chemical vapor deposition. Graphene was formed on the entire surface of the 500 nm thick Ni substrate even at 700 ˚C, although CH4 and Ar/H2 gas were supplied under plasma of 600 W for 1 second. The Raman spectrum showed typical graphene features with D, G, and 2D peaks at 1356, 1584, and 2710 cm-1, respectively. With increase of growth temperature to 900 ˚C, the ratios of the D band intensity to the G band intensity and the 2D band intensity to the G band intensity were increased and decreased, respectively. The results were strongly correlated to a rougher and coarser Ni surface due to the enhanced recrystallization process at higher temperatures. In contrast, highquality graphene was synthesized at 1000 ˚C on smooth and large Ni grains, which were formed by decreasing Ni deposition thickness to 300 nm.
        4,000원
        8.
        2008.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Aluminum nitride (AlN) powders were prepared by the chemical vapor synthesis (CVS) process in the system. Aluminum chloride () as the starting material was gasified in the heating chamber of . Aluminum chloride gas transported to the furnace in atmosphere at the gas flow rate of 200-400ml/min. For samples synthesized between 700 and , the XRD peaks corresponding to AlN were comparatively sharp and also showed an improvement of crystallinity with increasing the reaction temperature. In additions, the average particle size of the AlN powders decreased from 250 to 40 nm, as the reaction temperature increased.
        4,000원
        9.
        2008.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nano-sized tungsten disulfide () powders were synthesized by chemical vapor condensation (CVC) process using tungsten carbonyl () as precursor and vaporized pure sulfur. Prior to the synthesis of tungsten disulfide nanoparticles, the pure tungsten nanoparticles were produced by same route to define the optimum synthesis parameters, which were then successfully applied to synthesize tungsten disulfide. The influence of experimental parameters on the phase and chemical composition as well as mean size of the particles for the produced pure tungsten and tungsten disulfide nanoparticles, were investigated
        4,000원
        10.
        2006.09 구독 인증기관·개인회원 무료
        FePt binary-alloy nanopowder has been successfully synthesized by chemical vapor condensation process with two metal organic precursors, i.e., iron pentacarbonyl and platinum acetylacetonate. Average particle size of the powder was less than 50 nm with very narrow size distribution, revealing high dispersion capability. Characteristics of the powder could be controlled by changing process parameters such as reaction temperature, chamber pressure, as well as gas flow rate. Magnetic properties of the synthesized FePt nanopowder were investigated and analyzed in terms of the powder characteristics.
        12.
        2004.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fe(C) nanocapsules were prepared by the chemical vapor condensation(CVC) process using the pyrolysis of iron Their characterizations were studied by means of X-ray diffraction, X-ray photoelectron spectrometer and transmission electron microscopy. The long-chained Fe(C) nanocapsules hav-ing the mean size of under 70 nm could be obtained below in different gas flow rates. The particle size of the powders was increased with increasing decomposition temperature, but it was decreased with increasing CO gas flow rate. The Fe powders produced at consisted of three layers of phases, but it had two phase core-shell structure which consited of phase of core and graphite of shell at
        4,000원
        18.
        2002.06 구독 인증기관·개인회원 무료
        나노미터 크기의 결정립을 가지는 나노분말 및 나노복합분말의 제조와 특성에 관한 연구가 매우 활발하다. 나노복합분말의 제조방법에는 기상증발후 응축법, 화학응축법, 기계적합금법 등이 있으나, 고순도 및 균일한 크기분포의 분말과 응집되지 않은 분말의 제조 조건을 가장 잘 만족하는 방법은 화학기상응축법(Chemical Vapor Condensation; CVC)이다. 본 연구그룹 에서는 CVC밤법으로 이용하여 공구/금형재료에 가장 많이 사용되는 WC/Co 합금
        19.
        2002.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nanosized tungsten carbide powders were synthesized by the chemical vapor condensation(CVC) process using the pyrolysis of tungsten hexacarbonyl(). The effect of CVC parameters on the formation and the microstructural change of as-prepared powders were studied by XRD, BET and TEM. The loosely agglomerated nanosized tungsten-carbide() particles having the smooth rounded tetragonal shape could be obtained below in argon and air atmosphere respectively. The grain size of powders was decreased from 53 nm to 28 nm with increasing reaction temperature. The increase of particle size with reaction temperature represented that the condensation of precursor vapor dominated the powder formation in CVC reactor. The powder prepared at was consisted of the pure W and cubic tungsten-carbide (), and their surfaces had irregular shape because the pure W was formed on the powders. The and W powders having the average particles size of about 5 nm were produced in vacuum.
        4,000원
        1 2