검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 12

        1.
        2023.11 구독 인증기관·개인회원 무료
        The bentonite buffer material is a crucial component for disposing of high-level radioactive waste (HLW). Several additives have been proposed to enhance the performance of bentonite buffer materials. In this study, unconfined compression tests were conducted on bentonite mixtures as well as pure bentonite buffer material. Joomunjin and silica sands were added at a 30% ratio, and graphite was added at 3% along with bentonite. The unconfined compression strength (UCS) and elastic modulus of pure bentonite were found to be 20% to 50% higher than those of bentonite mixtures under similar dry density and water content conditions. This decrease in strength can be attributed to the reduced cross-sectional area available for bearing the applied load in the bentonitemixture. Furthermore, the 3% graphite-bentonite mixture exhibited a 10% to 30% higher UCS and elastic modulus compared to the 30% sand-bentonite mixtures. However, since the strength properties of additive-bentonite mixtures are lower than those of pure bentonite, it is essential to evaluate thermohydraulic-mechanical functional criteria when considering the use of bentonite mixtures as buffer materials.
        2.
        2023.05 구독 인증기관·개인회원 무료
        When damaged nuclear fuel is stripped and re-fabricated into stabilized pellets, it is necessary to analyze the characteristics of the stabilized pellets, such as density, leaching behavior, and compressive strength, for final disposal. In this study, simulated nuclear fuel with UO2 and burn-up of 35 GWd/tU and 55 GWd/tU was used to measure the compressive strength of the stabilization pellet. In order to change the density of the sintered pellet, a sintered pellet was prepared by heat treatment at 1,550°C and 1,700°C for 6 hours in a reducing atmosphere of 4% H2/Ar. In the case of UO2, the density was 10.4 g/cm3 (94.5% of T.D.) and 10.6 g/cm3 (96.6% of T.D.) depending on the sintering temperature (1,550°C, 1,700°C). In the case of simulated fuel with a burn-up of 35 GWd/tU, the density was 8.8 g/cm3 (80.9% of T.D.) and 10.2 g/cm3 (93.6% of T.D.) depending on the sintering temperature (1,550°C, 1,700°C). In the case of simulated fuel with a burn-up of 55 GWd/tU, the density was 8.3 g/cm3 (77.0% of T.D.) and 10.0 g/cm3 (92.3% of T.D.) depending on the sintering temperature (1,550°C, 1,700°C). It was found that the compressive strength of simulated nuclear fuel decreased with increasing burn-up and increased with increasing density. In the case of UO2, the compressive strengths were 717.8 MPa and 897.4 MPa when the densities were 10.4 g/cm3 and 10.6 g.cm3, respectively. In the case of simulated nuclear fuel with a burn-up of 35 GWd/tU, the compressive strengths were 472.1 MPa and 732.3 MPa when the densities were 8.8 g/cm3 and 10.2 g/cm3. In the case of simulated nuclear fuel with a burn-up of 55 GWd/tU, the compressive strengths were 301.4 MPa and 515.5 MPa when the densities were 8.3 g/cm3 and 10.0 g/cm3, respectively.
        3.
        2022.05 구독 인증기관·개인회원 무료
        During normal and off-normal conditions, the concrete structures of dry storage system for spent nuclear fuel must maintain structural integrity. A stress-strain curve is the most important key factor for structural integrity evaluation. The ASTM C39 specifies the concrete specimen geometry for the static compression test. However, there is no standard specimen size for intermediate stain rate, and it is not easy to maintain consistency among all test results because the failure tendency is different from each other. In order to account for the strain rate effects on concrete, the dynamic increase factor (DIF) is conventionally addressed by dividing dynamic strength by static strength. However, the DIF value considers only the strength of concrete and does not describe the overall behavior of concrete, such as a stress-strain relation. The objective of this study is to propose proper specimen geometry for the concrete dynamic compression test by several parametric study. The static compression simulation results with the specimen specified in ASTM C39 showed the constant strain distribution in a cylindrical specimen. However, as the strain rate increases, the strain state in specimen showed a nonuniform with the same geometry of ASTM C39. The non-uniform strain state in the specimen deteriorates the consistency and accuracy of the compression test. Therefore, we presented the specimen shape and size to form a uniform strain state through radial direction by drilling a hole in the axial direction. We analyzed two specimens using ABAQUS with the concrete damaged plasticity model, one with a hole at the center and the other without the hole. As a result, the strain distribution became more uniform than the specimen without the hole. Based on the results, we proposed the specimen shape and size for the intermediate strain rate compression test.
        4.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES:Emulsified asphalt is critical for road construction. The objective of applying asphalt emulsion as an adhesive is to prevent the phenomenon of debonding between the upper and lower layers. The quantity and veriety of bituminous material can be varied according to the type of pavement and site conditions. The objective of this study is to reveal the optimum application rates of the emulsified asphalt materials by types of tack-coats using Interface Shear Strength(ISS).METHODS:In the research, emulsified asphalt was paved on the surface of the divided mixture. The specimens of paving asphalt emulsion were utilized to evaluate the bond strength of tack-coat materials. In the evaluation process, NCHRP Report 712 was utilized to investigate the Interface Shear Strength, which reflects the bond capacity of asphalt emulsion. Then, the optimum residual application rates by tack-coat types were determined using regression analysis.RESULTS:As a consequence of squared R values investigated from 0.7 to 1 as part of the regression analysis, the tendency of predicted ISS values was compared with the results. The optimum residual application rates of AP-3, RS(C)-4, QRS-4, and BD-Coat were determined to be 0.78ℓ/m2, 0.51ℓ/m2, 0.53ℓ/m2, and 0.73ℓ/m2, respectively, utilizing 4th regression analysis.CONCLUSIONS:Based on the result of this study, it was not feasible to conclude whether higher residual application of tack-coat material leads to improved bond capacity. Rather, the shearing strength varies depending on the type of pavement.
        4,000원
        5.
        2013.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, uniaxial compression tests were performed to investigates the stress-strain relations of Double Skinned Composite Tubular Columns reinforced with steel tube. The confined concrete has been known as the strength of concrete increases significantly. Specimens reinforced with outer and inner steel tube were tested by uniaxial compression test. To investigate the influence of concrete strength increase by confining conditions in steel tubes, 8 specimens with different thickness of tube, hollowness ratio and concrete strength were tested and compared with other researcher's concrete material model.
        4,000원
        6.
        2013.04 구독 인증기관 무료, 개인회원 유료
        This study investigates the stress-strain relations of internally confined hollow concrete filled tube pier reinforced with GFRP tube by uniaxial compression test. The confined concrete subjected multi-axial stresses have been known as the strength of concrete increases significantly. Many researchers have studied in confining effects of CFT which have only outer GFRP tube. In this study, specimens reinforced with outer and inner GFRP tube were tested by uniaxial compression test. To investigate the influence of concrete strength increase by confining conditions in GFRP tube, 13 specimens with different thickness of tube, hollowness ratio and nominal concrete strength were tested and compared with Steel tube.
        3,000원
        8.
        2011.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        이 연구는 새로운 형태의 FRP-콘크리트 합성말뚝인 하이브리드 CFFT(HCFFT)를 개발하는 과정의 일부이다. 이 논 문에서는 CFFT와 HCFFT의 압축강도실험을 통하여 구조적 거동을 분석하였다. 압축강도실험에 앞서 PFRP와 FFRP 재료의 역학적 성질을 조사하였다. HCFFT 압축강도실험은 콘크리트 강도와 FFRP의 두께를 변수로 하여 실험을 수 행하였다. 그리고, FFRP 두께를 변수로 PFRP를 제외한 CFFT 실험체를 제작하고 실험을 수행하여 HCFFT와 비교· 분석하였다. 실험 결과, HCFFT의 압축강도는 CFFT에 비하여 11~47% 향상되는 것으로 나타났다. 실험구간내의 필 라멘트 와인딩 FRP 보강두께의 증가에 따른 HCFFT의 압축강도는 선형으로 증가시키는 것으로 나타났다. 또한 실 험체와 동일한 조건의 유한요소해석을 수행하였다. 해석결과는 실험결과에 비하여 모든 시편에서 약간 작은 값을 보였으며, 0.14%에서 17.95%까지의 오차범위 내에 있음을 알 수 있었다.
        4,000원
        9.
        2011.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        일반적으로 도로 포장체의 파손은 다양한 요소에 영향을 받는 것으로 알려져 있다. 그 중 가장 주된 포장체 파손형태로서 영구변형(permanent deformation)과 피로균열(fatigue crack)을 들 수 있으며 이들은 포장체의 공용수명을 단축시키는 주요원인이 된다. 도로 포장체의 영구변형을 정확히 예측하는 것은 도로포장체의 내구성을 파악하여 이를 기반으로 포장을 설계하는 포장설계법의 수립에 있어 매우 중요하다. 포장하부구조의 재료거동은 본질적으로 전단강도(τmax)와 밀접한 연관성을 가지므로 포장하부구조 내 발생한 전단응력τ의 전단강도에 대한 발생비를 고려하여 영구변형 모델을 설정할 필요가 대두되고 있다. 이에 본 연구에서는 이와 같은 전단응력비 개념을 도입한 대형반복삼축압축시험을 통하여 도로하부 재료 중 국내에서 사용되는 대표적인 입상의 보조기층 재료에 대한 영구변형 특성을 알아보았으며 이를 기초로 영구변형 모델의 수립에 필요한 모델 매개변수를 시험을 통해 새롭게 제안하고자 하였다.
        4,000원
        11.
        2019.10 서비스 종료(열람 제한)
        강재 기둥과 강섬유보강 콘크리트(SFRC) 기둥의 주근을 볼트 접합시키는 상세에서 접합면에 작용하는 축응력이 주근에 전달되는 메커니즘을 분석하기 위하여, 국부압축실험을 실시하였다. 국부실험체의 강섬유보강비는 1.0%를 적용하였으며, 실험체 변수는 기둥의 폭:높이비와 단면 가력조건 등이다. 국부압축 실험결과, 높이증가에 따른 평균 최대 축응력이 증가하는 것으로 나타났다.
        12.
        2018.04 서비스 종료(열람 제한)
        The purpose of this study is to compare the ultrasonic pulse velocity before and after core compression test of steel fiber reinforced concrete using the ultrasonic pulse velocity method. The correlation between the column member ultrasonic pulse velocity before core test, the column member ultrasonic pulse velocity after core test, and the compressive strength of the core specimen were analyzed by fabricating a steel fiber reinforced concrete hollow column member.