The prevalence of cancer in companion dogs is growing nowadays with the increasing worldwide population of domestic dogs. Since there is a less established standard of care in veterinary medicine, investigational treatments, such as the development of biomarkers can be considered as a therapeutic intervention for early diagnosis. Despite the enormous efforts that have been invested in the search of biomarkers, still, there is a need for easy detection of significant biological markers for predicting canine cancers at an early stage. In this study, we have analyzed the expression pattern of previously reported 46 canine cancer-associated candidate genes in blood specimens using real-time qPCR. We hypothesized that analysis of gene expression in blood would provide preliminary evidence of local or systemic immunogenic response which further contribute to the easy and early diagnosis of canine cancer from blood specimen as an analytical tool. The datasets included a total of 22 blood samples collected from different breeds of dogs diagnosed with cancer and five from healthy normal dogs. RT-qPCR analysis was performed by employing the SYBR Green PCR mix to assess the expression of these 46 genes in a total of 27 samples. From our result, a total of nine genes (ROS1, C1QA, CD48, IL1b, TLR2, IL2R, CHI3L1, CTSS, and TLR7) were found to be significantly up-regulated (p < 0.05 and p < 0.01) in the cancer samples compared to non-cancer samples. The relative expression level of ROS1, C1QA, CD48, IL1b, TLR2, IL2R, CHI3L1, CTSS, and TLR7 genes was 5.74, 4.78, 3.94, 2.94, 2.57, 2.53, 2.50, 2.04, and 2.57, respectively, in cancer samples compared to non-cancer samples. Thus, our results reveal several highly expressed cancer genes that can be therapeutic target genes for further testing in canine cancers.
전극 구성에 따른 고효율 전해정련공정의 일반적인 모델을 구축하기 위하여, 상미분방정식 인터페이스를 갖는 COMSOL Multiphysics V5.3 전착 모듈을 사용하여 수치해석을 실시하였다. 구축된 모델은 한국원자력연구원에서 제작한 실험실 규 모 (1kg 우라늄/day 규모) 다중배열전극 전해정련장치를 사용해 전극 간 거리, 전극 배열을 변수로 하여 실시한 실험의 전 류밀도-전위 곡선과 비교하였다. 공정온도는 500℃이다. 용융염은 3wt% UCl3가 포함된 LiCl-KCl 공융염을 사용하였다. 검 증된 모델을 이용하여 전류밀도-셀전위 곡선을 계산한 결과 전극 간 거리가 가까울수록, 전극 배열은 양극/음극 면적비가 증 가할수록 셀 전위가 낮아져 전해정련장치의 우라늄 처리효율을 향상시킬 수 있다는 것을 확인하였다. 이러한 접근은 고출력 사용후핵연료 전해정련기의 안전설계를 위한 데이터베이스 구축에 유용할 것이다.
The Automobile HVAC system is a habitat for odor-associated fungal communities. We investigated the odorassociated fungal community in an automobile HVAC system using a high-throughput DNA sequencing method. The fungal community structure was evaluated via metagenome analysis. At the phylum level, Ascomycota and Basidiomycota were detected, accounting for 43.41% and 56.49% of the fungal community in the HVAC system, respectively. Columnosphaeria (8.31%), Didymella (5.60%), Davidiella (5.50%), Microxyphium (4.24%), unclassified Pleosporales (2.90%), and Cladosporium (2.79%) were abundant at phylum of Ascomycota and Christiansenia (36.72%), Rhodotorula (10.48%), and Sporidiobolus (2.34%) were abundant at phylum of Basidiomycota. A total of 22 genera of fungi were isolated and identified from the evaporators of the HVAC systems which support fungal growth and biofilm formation. Among them, Cladosporium, Penicillium, Aspergillus and Alternaria are the most representative odor-associated fungi in HVAC systems. They were reported to form biofilm on the surface of HVAC systems with other bacteria by hypha. In addition, they produce various mVOCs such as 3-methyl-1-butanol, acetic acid, butanoic acid, and methyl isobutyl ketone. Our findings may be useful for extending the understanding of odor-associated fungal communities in automobile HVAC systems.
본 연구에서는 FT-IR 스펙트럼데이터의 다변량 통계분석 기법을 활용하여 인도수집 옥수수 계통 및 품종으로부터 단백질 함량이 높은 옥수수를 신속하게 선발할 수 있는 선발체계를 확립함과 동시에 lysine과 tryptophan의 함량분석을 목적으로 연구를 수행하였다. 총 48시료의 인도수집 옥수수 계통 및 품종과 국내산 품종을 이용하여 종자로부터 FT-IR 스펙트럼을 조사하였으며, 무작위로 선발된 24시 료를 대상으로 총 단백질 함량을 조사하였다. 대조구로 사용한 광평옥 모계(GPO1)의 경우 단백질 함량 이 9.34 ± 0.3mg/g dw인데 비하여 H4 계통의 경우 단백질 함량이 10.26 ± 0.5mg/g dw로 48개 옥 수수 시료 중에서 가장 높게 나타났다. 특히 옥수수 H4, H6, H11, 그리고 H12 계통의 경우 총 단백질 함량이 각각 10mg/g dw 이상으로 측정되어 광평옥 모계(9.34mg/g dw)와 부계(9.36mg/g dw) 및 이 들의 F1(9.14mg/g dw)보다 총 단백질 함량이 높은 계통으로 판명되었다. Cross-validation test에서 옥수수 종자 내 총 단백질 함량예측 PLS regression model의 regression coefficient(R2) 는 0.77로 비교적 정확하게 총 단백질 함량예측이 가능한 것으로 나타났다. 따라서 본 PLS regression model을 이용하여 단백질 함량이 높은 사일리지 옥수수 계통의 선발이 가능할 것으로 기대되며, 더 나아가 다양 한 옥수수 계통의 신속한 대사체 수준 평가가 가능할 것으로 예상된다.
The purpose of this study is to introduce the limit of previously used six sigma quality process evaluation metrics, Zst and Ppk, and a solution to overcome this drawback by using a metric based on performance evaluation of Z-factor quality innovation. Case analysis on projects from national six sigma contest from 2011 to 2012 is performed and literature review on new drug development HTS (High Throughput Screening) is used to propose innovative performance evaluation metrics. This research shows that experimental study on six sigma evaluation metric, Zst and Ppk, have no significance difference between industrial type (Manufacturing, Semi-Public Institute, Public Institute) and CTQ type (Product Technology Type CTQ, Process Technology Type CTQ). Following discovery characterize this quality improvement as fixed target type project. As newly developed moving target type of quality innovation performance metric Z-Factor is used for evaluating experimental study, hypothetical analysis suggests that Zst and Ppk share different relationship or even show reciprocal relationship. Constraints of the study are relatively small sample size of only 37 projects from past 2 years and conflict on having interview and communication with six sigma quality practitioner for qualitative experimental study. Both moving target type six sigma innovation project and fixed target type improvement project or quality circle enables efficient ways for a better understanding and quality practitioner use by applying quality innovation performance metric. Downside of fixed target type quality performance evaluation metric, Zst and Ppk, is presented through experimental study. In contrast, advantage of this study is that high throughput requiring product technology, process technology and quantum leap typed innovation effect is evaluated based on precision and accuracy and Z-Factor that enables relative comparison between enterprises is proposed and implemented.
The baculovirus expression system is one of the most popular methods used for the production of recombinant proteins but has several complex steps which have proved inherently difficult to meet a multi-parellel process. We have developed a novel recombinant bacmid, bEasyBm that enabling easy and fast generation of pure recombinant virus without any purification step. In the bEasyBm, attR recombination sites were introduced to facilitate the generation of recombinant viral genome by in vitro transposition. Moreover, extracellular RNase gene from bacillus amyloliquefaciens, barnase, was expressed under the control of Cotesia plutellae bracovirus early promoter. Therefore, only when the barnase gene was replaced to gene of interest, the bEasyBm could replicate in host insect cells. When the bEasyBm was transposed with pDualBac-EGFP and pDualBac-LUC respectively, there were no non-recombinant backgrounds were detected from unpurified BmEasy-EGFP or BmEasy-LUC stocks. In addition, the resulting recombinant virus, BmEasy-EGFP, showed comparable level of EGFP expression efficiency with the plaque-purified recombinant virus, BmEGFP, which was constructed using bBmGOZA system. Based on these results, high-throughput condition for generation of multiple recombinant viruses in a time was established.
The use of high throughput screening (HTS) in drug development is principally for the selection new drug candidates or screening of chemical toxicants. This system minimizes the experimental environment and allows for the screening of candidates at the same time. Umbilical cord-derived stem cells have some of the characteristics of fetal stem cell and have several advantages such as the ease with which they can be obtained and lack of ethical issues. To establish a HTS system, optimized conditions that mimic typical cell culture conditions in a minimal space such as 96 well plates are needed for stem cell growth. We have thus established a novel HTS system using human umbilical cord derived-mesenchymal stem cells (hUC-MSCs). To determine the optimal cell number, hUC-MSCs were serially diluted and seeded at 750, 500, 200 and 100 cells per well on 96 well plates. The maintenance efficiencies of these dilutions were compared for 3, 7, 9, and 14 days. The fetal bovine serum (FBS) concentration (20, 10, 5 and 1%) and the cell numbers (750, 500 and 200 cells/well) were compared for 3, 5 and 7 days. In addition, we evaluated the optimal conditions for cell cycle block. These four independent optimization experiments were conducted using an MTT assay. In the results, the optimal conditions for a HTS system using hUC-MSCs were determined to be 300 cell/well cultured for 8 days with 1 or 5% FBS. In addition, we demonstrated that the optimal conditions for a cell cycle block in this culture system are 48 hours in the absence of FBS. In addition, we candidates using our HTS system which demonstrates the feasibility if using hUC-MSCs for this type of screen. Moreover, the four candidate compounds can be tested for stem cell research application.
High-throughput microscopy (HTM) was developed recently for the automatic detection of airborne asbestos fibers that can cause lung cancer, asbestosis and mesothelioma. The HTM method has been applied to couting the airborne asbestos fibers as an alternative to the conventional phase contrast microscopy (PCM). In this paper, we demonstrated that the HTM enabled us to obtain quantitative results for low-concentration airborne asbestos samples under detection limit, and we made a comparison between the results from HTM and PCM. In addition, a verification study was conducted using proficiency analytical testing (PAT) samples of chrysotile and amosite. The HTM method can be applied to the existing PCM method by reducing analysis time and labors. Potential applications can be extended to detection of asbestos fibers in soil and water.
Since it has been reported that asbestos fibers cause serious health problems such as lung cancer, malignant mesothelioma and other related diseases, it turns into social issue leading to a number of studies for characterizing asbestos found in the indoor environment. Among the established methods for detecting asbestos fibers, phase contrast microscopy (PCM) method is widely used as it dose not require complicated process nor high-priced equipments. However, PCM method is hard to define a sort of asbestos and to detect tiny asbestos fibers. We developed an image-based high-throughput microscopy (HTM) for automated counting of asbestos fibers which were distinguishable from the spherical particles. HTM method enabled us to analyze asbestos fibers both automatically and quantitatively. Test samples of chrysotile, amosite and crocidolite, which are frequently detected in Korea, were used in this study and comparisons were made between concentrations of asbestos fibers measured by manual counting method and HTM method. Application of HTM system can be extended to various areas such as malaria diagnosis, rare cell detection and bacterial colony counting.
한우 이력추적제에 적용되는 11개의 MS marker (TGLA227, BM2113, TGLA53, ETH10, SPS115, TGLA126, TGLA122, ETH3, ETH225, BM1824 and INRA23)와 성감별을 위한 2개의 sexing primer로 조합된 하나의 Multiplex PCR set를 이용하여 모근에서 추출한 genomic DNA를 이용해 3510두의 대량 시료를 분석한 결과 3.93%의 genotyping 실패율로 성공적인 분석결과를 얻었다. 무작위교배집단으로 가 정 시 동일개체출현확률 (PI)은 1.31×10-23, 반형매교배집단으로 가정 시 동일개체출현확률 (PIhalf-sibs)은 2.52×10-16 그리고 전형매교배집단으로 가정 시 동일개체출현확률 (PIsibs)은 1.09×10-6으로 나타나 현재 사용 중인 11종의 MS marker는 범용적으로 사용하여도 무방할 것으로 재확인 되었다. 또한 생산 및 사 육단계의 생우의 경우 모근을 이용하여 DNA를 추출하는 것은 시료 채취 시 소에게 주어지는 스트레스를 최소화 시킬 수 있을 뿐만 아니라 대립유전자형 분석에 있어서 시간적, 경제적인 효율성을 높일 수 있었 다. 또한 모근 채취 부위 중 등, 배, 꼬리상부와 꼬리하부를 이용하여 검정한 결과 꼬리하부의 모근을 이 용하여 5~13가닥을 사용했을 때 최적의 분석결과를 보였다. 최종적으로 한우의 사육단계 대량 유전자형 분석에 적용 가능한 96 well 단위를 기본으로 하는 모근 DNA분리 체계를 확립하였다.
Recently, we constructed a novel recombinant baculovirus genome, bEasyBac, enabling easy and fast generation of pure recombinant baculovirus without any purification step. In the bEasyBac, bacteriophage lambda site-specific attachment (att) sites were introduced to facilitate the generation of recombinant viral genome by in vitro transposition. Moreover, extracellular RNase gene from Bacillus amyloliquefaciens, barnase, was expressed under the control of Cotesia plutellae bracovirus (CpBV) ORF3005 early promoter to negatively select against non-recombinant background. The bEasyBac could replicate in host insect cells only when the barnase gene was replaced to gene of interest by in vitro transposition. When the bEasyBac was transposed with pDualBac-EGFP and the EGFP expression efficiency along passage was investigated, the resulting recombinant virus, EasyBac-EGFP, showed comparable level of EGFP expression efficiency with the plaque-purified recombinant virus, AcEGFP, which was constructed using bAcGOZA system, whereas, the non-purified AcEGFP showed quite reduced level of EGFP along passages. Moreover, no non-recombinant backgrounds were detected from unpurified EasyBac-EGFP stocks. Based on these results, high-throughput condition for generation of multiple recombinant viruses in a time was established. These results suggest that the bEasyBac has an effective benefit enabling for high-throughput baculovirus expression vector without purifying recombinant virus.
공학 및 과학문제 해석을 위해 적용되는 전산 시뮬레이션은 다양한 변수 혹은 데이터의 변화를 통해 다수의 작업을 생성하고 계산함과 동시에, 생성된 결과를 비교 분석하기 위한 필수적인 기법이다. 본 연구에서는 그리드 컴퓨팅을 활용하여 웹상에서 대용량의 전산 시뮬레이션이 가능한 시스템을 개발하고, 이를 이용한 2가지 실제 응용사례를 제시한다. 첫 번째 응용사례는 e-AIRS(Aerospace Integrated Research Environment)라 명명된 연구포탈이다 e-AIRS는 수치해석 연구자가 대규모의 전산 해석을 실시하고, 실험 연구자가 원격지에서 실험을 요청하고 그 결과를 모니터링 할 수 있는 e-Science 연구환경을 제공한다. 두 번째 응용사례는 대규모 계산환경을 이용한 단백질 구조설계를 제시한다. 제안된 계산환경을 이용하여 생성된 단백질 전산 예측구조와 자연상태 구조를 비교하고, 제안된 계산환경의 유용성을 검토한다.
Powder library of pseudo four components Li-Ni-Co-Ti compounds were prepared for exploring the composition region with the single phase of the layer-type structure by using combinatorial high-throuput preparation system "M-ist Combi" based on electrostatic spray deposition method. The new layer-type compounds were found wider composition region than the previous report. This process is promising way to find multi component functional materials.
Background : Mulberry (Morus alba L.), renowned for their medicine benefits and the leave as the sole food for silkworm (Bombyx mori). To understanding the molecular mechanism of color formation and nutritive value in different mulberry fruit varieties, we use high-throughput transcriptome sequencing technique to investigated the anthocyanin and betulinic biosynthesis pathway related functional genes. In addition, the total antosyanin and betuinic acid contend were also measured. Methods and Results : The resulting cDNA library was then sequenced using an Illumina HiSeq™ 2000 system. The clean reads were assembled using Trinity software, Then perform gene family clustering to get final unigenes. The pH differential method was used to determine the total anthocyanin content (TAC) of methanol extract from the red and white mulberry, and High-performance liquid chromatography (HPLC) analysis was used to quantify the triterpenes content. In this study, total 50,149 unigenes with an average length of 1,125 nt and N50 equaling 1,861 nt were generated. Using these transcriptome sequecing, cDNAs encoding anthocyanin biosynthetic genes and triterpene biosynthetic genes were isolated. In addition, total anthocyanins and betulinic acid content were analyzed. A great amount of total anthocyanins (59.16 mg/g) were found in fully ripe fruit of Cheongil. Accumulation of betulin and betulinic acid were also detected in all stages of Cheongil and Turkey fruits with small amount. Conclusion : The results of transcriptome sequencing provide useful information at molecular lever in mulberry research, such as interesting gene discovering, marker assisted molecular breeding, and interesting metabolic pathway investigate. The gene expression results could help us understanding of the molecular mechanisms of different fruit color determining factor.
The world population is projected to reach to 9.6 billion people by 2050. With increasing population and improving living standards, the demand for food is accelerating. In order to meet increasing demand for food while the arable land and other resources are decreasing, agriculture needs all the tools available to sustainably increase crop yields. Development of effective GM traits to protect crops from abiotic and biotic stressors is a critical aspect of sustainable yield improvement. Efficient identification of traits and rapid integration of the traits into commercial elite germplasm requires robust and rapid traits testing. Monsanto have developed numerous high-throughput phenotyping platforms to support rapid trait identification and integration. Selected phenotyping platforms will be reviewed to gain understanding on how they are utilized for trait phenotyping.