The Indoor Air Quality Control Act aims to regulate indoor air quality (IAQ) to safeguard public health and promote a comfortable living environment. This law encompasses multi-use facilities, newly constructed residential complexes, and public transportation vehicles. The law also involves mandating air quality standards, conducting periodic measurements, and transparent public reporting of results. Over time, the Indoor Air Quality Control Act has expanded to enforce stricter controls on building materials and enhance radon mitigation measures. In doing so, it embodies the principles of the Environmental Policy Basic Act and is supported by other laws, policies, and systems related to air quality management. In line with these efforts, local governments have been implementing IAQ initiatives tailored to regional needs, including consulting services and financial support. However, challenges persist in harmonizing management across diverse facilities due to overlapping responsibilities among laws and government bodies. Future recommendations emphasize integrated strategies and enhanced inter-agency coordination to address these gaps effectively, ensuring healthier indoor environments for all stakeholders.
This study aims to prepare bamboo-based activated carbons with surface modifications, focusing on carbon dioxide (CO2) capture in public indoor spaces. The surface of the activated carbon adsorbents was chemically modified through three steps: carbonization, steam activation, and chemical treatment using potassium hydroxide (KOH) and potassium sulfamate (KSO3NH2). The specific surface area and pore volume of the obtained adsorbent (BSAC-KN) were 1,246 m2/g and 0.74 cm3/g, respectively. The surface modification resulted in an adsorption capacity of up to 3.79 mmol-CO2/ g-AC for carbon dioxide. In addition, the expansion of the specific surface area and the enhanced physico-chemical interaction between the weak acidic CO2 molecules and the basic AC surface improved adsorption capacity.
Indoor air quality is a critical factor affecting health and quality of life, especially in spaces frequently used by sensitive populations such as adolescents. This study assessed the impact of garden ball installations and electrochemical fertilizer applications on indoor air quality in two youth centers, Center S and Center W, located in Bucheon, South Korea. PM2.5, PM10, and CO2 concentrations were monitored and analyzed based on the presence of garden balls and the use of electrochemical fertilizers. The results showed that spaces with garden balls (w/ G.B.) had significantly lower PM2.5 and PM10 concentrations compared to offices and spaces without garden balls (w/o G.B.). In Center W, the presence of garden balls alone improved air quality, highlighting the potential of vertical greening as a sustainable solution. In Center S, the application of electrochemical fertilizers during the “after + period” (when both garden balls and electrochemical fertilizers were applied) further enhanced particulate matter reduction, demonstrating the fertilizers’ ability to amplify plants’ air-purifying effects. This study provides empirical evidence that garden balls are an eco-friendly option for indoor air quality management. Combining electrochemical fertilizers with garden balls shows promise for enhancing air quality, offering a practical model for multi-use facilities such as youth centers.
Mold caused by indoor temperature and humidity is related to inflammatory reactions such as rhinitis, asthma, and allergic skin diseases. The subjects were children aged 3-7 in Seocheon-gun, Chungcheongnam-do. For indoor environmental measurement, a mold collection medium was installed on the sampling device and samples were collected at 28.3 L/min for 7 minutes. The sampling device was installed at a height of 1.2 m to 1.5 m above the ground to collect samples. The demographic characteristics of the children in the 90 households that participated in the survey were 53 males (58.9%) and 37 females (41.1%). The majority of the children were 5 years old (26 people or 28.9%), followed by 6 year olds (23 people or 25.6%), 7 year olds (18 people or 20.0%), 4 year olds (18 people or 20.0%), and 8 year olds (5 people or 5.6%). Among the characteristics listed on the questionnaire, 11 children (12.2%) were diagnosed with asthma, and 63 subjects (70%) had not been diagnosed by a doctor in the past 12 months. Regarding symptoms exhibited by the parents, 4 fathers (4.5%) and 2 mothers (2.2%) had symptoms. In the relationship between asthma and the concentration of other indoor environmental substances, the average concentration of mold was 57.0 CFU/m3 for non-asthmatics and 14.5 CFU/m3 for asthmatics, showing a statistically significant difference. The average concentration of house dust mites was 338.9 ng/g in non-asthmatics and 79.5 ng/g in asthmatics, showing a statistically significant difference.
Objectives: The main purpose of this study was to identify problems such as cooking fumes and lack of ventilation in school cafeterias and evaluate the improvement in the reduction of indoor pollutants in the cooking rooms through renovation. Methods: Three schools were selected for renovation and the spatial structures and air conditioning system of the cafeterias and cooking rooms wre investigated after renovation. The air conditioning systems were improved by the renovation work according to the characteristics of each school, and the concentration of indoor pollutants was measured and evaluated through CFD analysis. Results: The concentration of indoor pollutants in the cafeterias and cafe rooms was decreased after renovation. Conclusion: Air conditioning systems in the schools cafeterias and cooking rooms were improved in order to solve the problems of ventilation, and the indoor air quality improvement rate ranged from a minimum of 11% to a maximum of 40%. The renovation of cafeterias and cooking rooms was conducted to optimize the ventilation systems and this contributed to indoor air quality improvement by preventing the inflow of pollutants.
In this study, the operating performance of the heat pump dryer using the PF heat exchanger was experimentally studied. The capacity, COP, drain, SMER and operating status of the cooling cycle of the heat pump dryer were investigated according to the temperature, relative humidity and flow rate of the indoor air. Heat pump dryers are refrigerant-air system. For the dryer performance experiment, an air enthalpy calorimeter was used. From the experimental results, as the temperature, relative humidity, and flow rate of the inlet air increased, the capacity, COP, drain, SMER of the dryer increased. The change in the performance of the dryer was most affected by temperature. The P-h diagram of the cooling system showed that the operation status of the dryer was greatly affected by the indoor temperature. In addition, the SMER of the dryer showed a drying performance of about 3.38 kg/kWh or more within all experimental ranges.
본 연구는 돼지 간 거리(PD), 돈사 내 상대 습도(RRH), 돈사 내 이산화탄소(RCO2) 세 가지 변수를 사용하여, 네 개의 데이터 세트를 구성하고, 이를 다중 선형 회귀(MLR), 서포트 벡터 회귀(SVR) 및 랜덤 포레스트 회귀(RFR) 세 가지 모델 기계학습(ML)에 적용하여, 돈사 내 온도(RT)를 예측하고자 한다. 2022년 10월 5일부터 11월 19일까지 실험을 진행하였다. Hik-vision 2D카메라를 사용하여, 돈사 내 영상을 기록하였다. 이후 ArcMap 프로그램을 사용하여, 돈사 내 영상에서 추출한 이미지 안 돼지의 PD를 계산하였다. 축산환경관리시스템(LEMS) 센서를 사용하여, RT, RRH 및 RCO2를 측정하였다. 연구 결과 각 변수 간 상관분석 시 RT와 PD 간의 강한 양의 상관관계가 나타났다(r > 0.75). 네 가지 데이터 세트 중 데이터 세트 3을 사용한 ML 모델이 높은 정확도가 나타났으며, 세 가지 회귀 모델 중에서 RFR 모델이 가장 우수한 성능을 보였다.
Wall-embedded ventilators, which are commonly used for ventilation of buildings, greatly damage the aesthetics of the building due to pollutants such as dust and grease sticking to the fan and gaps of the ventilator as the period of use increases. For this aesthetic reason, it is often installed in a place that is not easily visible to people, and if the ventilation fan is not properly arranged and installed, it is difficult to maintain indoor air in an optimal state. In this study, the effect of the arrangement of ventilators on indoor ventilation performance was investigated. Comparisons were made between the case where three ventilators were concentrated and the case where they were spaced apart at regular intervals. It was found that the ventilation performance was different depending on the location where the ventilators were installed.
The objective of this study is to analyze the indoor air quality of multi-use facilities using an IoT-based monitoring and control system. Thise study aims to identify effective management strategies and propose policy improvements. This research focused on 50 multi-use facilities, including daycare centers, medical centers, and libraries. Data on PM10, PM2.5, CO2, temperature, and humidity were collected 24 hours a day from June 2019 to April 2020. The analysis included variations in indoor air quality by season, hour, and day of the week (including both weekdays and weekends). Additionally, ways to utilize IoT monitoring systems using big data were propsed. The reliability analysis of the IoT monitoring network showed an accuracy of 81.0% for PM10 and 76.1% for PM2.5. Indoor air quality varied significantly by season, with higher particulate matter levels in winter and spring, and slightly higher levels on weekends compared to weekdays. There was a positive correlation found between outdoor and indoor pollutant levels. Indoor air quality management in multi-use facilities requires season-specific strategies, particularly during the winter and spring. Furhtermore, enhanced management is necessary during weekends due to higher pollutant levels.
Herein, the present work focuses on the effective counter electrode for dye-sensitized solar cells. The bottom–up approach was adapted to synthesize Mn2O3 nanorods via the hydrothermal method and the reduced graphene oxide was merged with Mn2O3 to prepare a nanocomposite. The prepared nanocomposites were subjected to physio-chemical and morphological characterizations which revealed the crystalline nature of Mn2O3 nanorods. The purity level rGO was characterized using the Raman spectrum and the Fourier transform infrared spectroscopy employed to find the functional groups. The morphological micrographs were visualized using SEM and TEM and the high aspect ratio Mn2O3 nanorods were observed with 5–7 nm and supported by rGO sheets. The electrocatalytic nature and corrosion properties of the counter electrode towards the iodide electrolyte were studied using a symmetrical cell. The as-synthesized nanocomposites were introduced as counter electrodes for DSSC and produced 4.11% of photoconversion efficiency with lower charge transfer resistance. The fabricated DSSC devices were undergone for stability tests for indoor and outdoor atmospheres, the DSSC stability showed 93% and 80% respectively for 150 days.
목적 : 본 연구는 국민건강영양조사 제8기(2019-2021) 원시자료를 이용하여, 생체지표를 통한 휘발성 실내환 경요인(휘발성 유기 화합물, VOCs)과 백내장의 연관성을 파악하고자 하였다. 방법 : 백내장 의사진단 여부 및 가정 실내공기질 측정에 참여한 만 40세 이상의 성인 총 1,150명을 대상으로 하였다. 일반적 특성에 따른 휘발성 실내환경요인의 농도와 백내장의 유 ‧무에 따른 휘발성 실내환경요인의 농도를 비교하기 위해 복합표본 기술통계 분석과 로지스틱회귀분석을 하였다. p<0.050인 경우 유의한 것으로 판단하였다. 결과 : 대부분의 실내 휘발성 환경오염물질의 생체지표는 백내장을 진단받은 대상자에서 높게 나타났다. 특히 Benzene, Xylene, Acrolein, 1-Bromopropane, 1,3-Butadiene의 생체지표 평균농도(GM)가 백내장 진단받은 대상자들이 유의하게 높게 나타났다. 연령, 성별, 결혼, 알콜, 흡연, 소득을 보정한 복합표본 로지스틱회귀분석에 서, 1,3-Butadiene의 생체지표는 약 2배(OR 1.905(95% CI: 1.001, 3.625))의 위험도로 백내장에 영향을 미칠 수 있는 것으로 나타났다. 결론 : 본 연구는 기존에 밝혀지지 않은 휘발성 실내환경요인과 백내장의 연관성을 파악함으로써, 일부 휘발성 실내환경물질은 백내장의 원인물질로 작용할 수 있는 가능성을 보여주었다.
식물의 흡수를 통한 공기오염물질 제거는 생육 상태에 따라 그 효과가 달라진다. 실내에서 토양수분의 공급은 식물의 생 육을 위한 기본적인 관리 사항이다. 따라서 본 연구는 토양수 분함량에 따른 생리적 반응이 가스상 공기오염물질인 톨루엔 저감에 미치는 영향을 구명하고, 최적의 생육과 공기 정화 효 과를 위한 적정 토양수분함량을 찾고자 수행하였다. 이를 위 해 스파티필름과 파키라를 사용하여 40일 동안의 평균 토양 수분함량을 25%, 20%, 15%, 10%로 처리한 후 양자수율, 광 합성률, 기공전도도, 증산량 등 생리적 지수와 엽면적당 톨루 엔 저감량을 측정하였다. 그 결과 스파티필름은 토양수분함량 을 20~25%로 관리할 때 생육이 양호하고 최적의 톨루엔 저 감 효과를 얻을 수 있을 것으로 판단되며, 10% 이하 건조에 대한 주의가 요구된다. 반면 파키라는 토양수분함량 20% 이 하 처리구에서 톨루엔 저감량이 증가하였으나 10% 처리구에 서 생장량이 저하될 가능성이 있으므로, 공기 정화와 생육을 위한 최적 토양수분함량은 15~20% 범위이며, 25% 이상으로 장기간 유지하는 것은 과습을 유발할 가능성이 있는 것으로 판단된다.
Passengers on public buses operating in the metropolitan area are exposed to the closed indoor air for minutes to hours. The indoor air quality of buses is mostly controlled through ceiling-mounted ventilation and filtration devices. A simulation study using a commercial code was conducted for fluid flow analysis to evaluate the potential effectiveness of an air purifier that can be inserted into bus windows to supply clean air from the outside to the inside. As a result of field measurements, the average CO2 concentration inside the bus during morning and evening rush hours ranged from 2,106±309 ppm to 3,308 ± 255 ppm depending on the number of passengers on board. This exceeded the Guideline for Public Transportation. The optimal installation position of an air purifier appeared to be the front side of the bus. In fact, even a low diffusing flow velocity of 0.5m/s was effective enough to maintain a low concentration of CO2 throughout the indoor space. Based on numerical analysis predictions with 45 passengers on board, the maximum CO2 concentration in the breathing zone was 2,203 ppm with the operation of an air purifier.
Recently, there are some outdoor floor advertising lighting devices as one of the active marketing methods. However, for outdoor use, there are many restrictions due to the Outdoor Advertisement Act, according to requiring high-output heat generation, waterproofing, and AC power, etc. The purpose of this study is to develop a Duo Light product optimized for indoor use through publicity and information guidance in normal times and automatic evacuation route guidance display in case of disaster, in conjunction with disaster safety. To that end, patent search and patent association analyses were conducted, and a comparative analysis with commercial products was conducted as a case study. In addition, prototypes were designed and produced through the review of operation principles, where field environment surveys and self-tests were conducted. Also, technology roadmaps were presented by preparing plans for expandability and advancement of products. For the analysis of technology commercialization, the feasibility of technology commercialization was examined through the analysis of Jolly’s Model and Lean Canvas Model. The results of this study will be able to contribute to minimize human damage through the effective response to disasters, which can increase the effect of indoor advertising by using the proposed indoor floor advertising lighting device in advertising and disaster situations.
The purpose of this study was to determine the conditions necessary for the total eradication of mite pests in indoor environments. The study involved the construction of a sterilization experimental setup. For this setup, various sterilization techniques, such as UV-C, ozone, ultrasound, and heat were applied, based on previous research. The experimental procedure consisted of placing mite pests in a chamber and subjecting them to different sterilization techniques. Observations were conducted immediately after the experiment and repeated five days later to assess the extent of eradication. The results showed that UVC, ozone, and ultrasound methods were not successful in completely eradicating the mite pests. In contrast, heat sterilization demonstrated effectiveness depending on the specific temperature and exposure time. To achieve the eradication of mite pests in indoor environments, it is necessary to maintain conditions of short-term high-temperature sterilization above 65°C or sustain temperatures above 50°C for a minimum duration of 90 minutes.
In this study, a survey focusing on the status of clothing interest, inconveniences resulting from clothing, preferred design items, etc. was conducted on 364 elderly women to suggest aesthetically and functionally appropriate indoor wear design for at home elderly women aged 60 years or older. The survey results showed that in general, the respondents’ interest in clothing was high, and more respondents in their 70s or older had difficulty in the action of opening and closing. With respect to considerations when purchasing clothes, color was considered more important than design as respondent’s age increased, and size was regarded as the most important factor especially among those in their 80s. The preferred top styles were T-shirts and blouses among those in their 60s and 70s, and T-shirts and shirts among those in their 80s. The preferred sleeve lengths were “below the elbow” and “above the wrist” in all age groups. The preferred sleeve hem type was “tightening” in all age groups. The most preferred bottom styles were “straight-leg pants” and “elastic waistband.” This study suggests the design items of indoor wear, including top, bottom, and overgarment for warmth, appropriate for elderly women at home based on the survey results. The study results are expected to serve as basic data necessary for the revitalization of the clothing industry for elderly women.
This study was carried out to examine the concentration and distribution characteristics of total airborne bacteria (TAB) and airborne mold in non-regulated public-use facilities. The arithmetic mean (AM) of the TAB in all facilities was 356.5 ± 419.3 CFU/m3, and the geometric means (GM) was 157.8 CFU/m3, which did not exceed the standard value of 800 CFU/m3. The highest concentration was 637.3 ± 372.0 CFU/m3 (GM: 534.9 CFU/m3) in the underground shopping mall. The AM of airborne mold in all facilities was 448.2 ± 429.6 CFU/m3 (GM: 285.4 CFU/m3), which did not exceed the standard value of 500 CFU/m3, but was close to it. In particular, subway station (AM: 661.5 ± 441.2 CFU/m3, GM: 540.0 CFU/ m3), large-scale store (AM: 587.6 ± 683.2 CFU/m3, GM: 297.8 CFU/m3), and private educational institute (AM: 528.8 ± 379.6 CFU/m3, GM: 373.7 CFU/m3) exceeded the standard. Operational taxonomic unit of 16S rDNA and ITS2 rDNA region was analyzed to profile bacteria and mold component in the air of the public-use facilities. As a result, Pseudomonas and Morganella are the major bacterial groups. Regarding mold, Aspergillus, Candida, Malassezia, and Penicillium are the major groups. Component of each airborne bacterial and mold groups varied depending on the type of public-use facilities.