검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 22

        3.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The laser power has been continually increased since the laser was developed in the mid-20th century. Achieving higher laser power requires not only enhancing the cooling performance of laser systems but also addressing the potential degradation of optical characteristics due to thermal deformation induced by laser beam absorption in a mirror. This study delves into the thermal deformation characteristics of mirrors in high-power laser systems. To minimize thermal deformation by heat absorption, Zerodur, known for its low coefficient of thermal expansion, was employed as the mirror material. Various configurations including circular, rectangular, and spline shapes were implemented on a solid mirror structure. Furthermore, two different diameter of a mirror, 300mm and 400mm, were considered to investigate the size effect of the high-power laser beams. Also, three different transmitted beam power were adopted: 50W, 250W, and 500W. Based on the finite element analysis for the thermal deformation, the deformation characteristics of the different types of mirror structures were investigated and analyzed for high-power laser systems.
        4,000원
        4.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Titanium constitutes approximately 60% of the weight of steel and exhibits strength comparable to steel's but with a higher strength-to-weight ratio. Titanium alloys possess excellent corrosion resistance due to a thin oxide layer at room temperature; however, their reactivity increases above 600°C, leading to oxidation and nitridation. Welding titanium alloys presents challenges such as porosity issues. Laser welding minimizes the heat-affected zone (HAZ) by emitting high output in a localized area for a short duration. This process forms a narrow and deep HAZ, reducing the deterioration of mechanical properties and decreasing the contact area with oxygen. In this study, fiber laser welding was conducted on 8.0mm thick Ti-6Al-4V alloy using the Bead On Plate (BOP) technique. A total of 25 welding conditions were experimented with to observe bead shapes. The results demonstrated successful penetration within the 0.792mm to 8.000mm range. It was concluded that this experimental approach can predict diverse welding conditions for Ti-6Al-4V alloys of various thicknesses.
        4,000원
        5.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Research into lightweighting to improve vehicle fuel efficiency and reduce exhaust emissions continues as environmental regulations become increasingly stringent. Magnesium alloys, chosen for their lightweight properties, are more than 35% lighter than aluminum alloys and also exhibit excellent mechanical characteristics. While magnesium alloys are commonly utilized in arc welding processes like GTAW and GMAW, they pose challenges such as high residual stresses and welding defects. Laser welding, on the other hand, offers the advantage of precise heat input, enabling deep and high-quality welds while minimizing welding distortion. In this study, fiber laser welding was employed to weld a 4.0mm thick AZ31B-H24 using the Bead on Plate technique. A total of 10 different welding conditions were tested with fiber laser welding, and the cross-sections of the weld beads were examined. Weld bead shapes were measured based on five parameters. The results allowed for an evaluation of the weldability of AZ31B-H24 using fiber laser welding.
        4,000원
        6.
        2023.11 구독 인증기관·개인회원 무료
        Thermal cutting processes that can be applied to dismantling nuclear power plants include oxygen cutting, plasma cutting, and laser cutting. According to the global trend, research projects are being carried out in various countries to upgrade laser cutting, and many studies are also being conducted in Korea with plans to apply laser cutting processes when dismantling nuclear power plants. However, with the current technology level of the laser cutting process, the maximum thickness that can be cut is limited to 250 mm. Therefore, in this study, a laser-oxygen hybrid cutting process was implemented by adding a laser heat source to the oxygen cutting process that can cut carbon steel with a thickness of 250 mm or more (RV, beam, column, beam, etc.) when dismantling the nuclear power plant. This has the advantage of improving the cutting speed and reducing the cutting width Kerf compared to conventional oxygen cutting. In this research, the laser-oxygen hybrid cutting process consisted of laser cutting to which Raycus’ 8 kW Fiber Laser power source was applied and oxygen cutting to which hydrogen was applied with Fuel Gas. The oxygen torch was placed perpendicular to the test piece, and the laser head was irradiated by tilting 35° to 70°. The effects of cutting directions on quality and performance were studied, and cutting paths were selected by comparing cutting results. Thereafter, it was confirmed that there is an optimal laser output power according to the cutting thickness by studying the effect on the cutting surface quality by changing only the laser output power under the same cutting conditions. The results of this study are expected to be helpful in the remote cutting process using laser-oxygen hybrid cutting when dismantling domestic nuclear power plants in the future.
        7.
        2023.05 구독 인증기관·개인회원 무료
        Radioactive Oxide is formed on the surface of the coolant pipe of the nuclear power plant. In order to remove the oxide film that is formed on the surfaces of the coolant pipe, chemical and physical decontamination technologies are used. The disadvantage of traditional technologies is that they produce secondary radioactive wastes. Therefore, in this study, the short-pulsed laser eco-friendly technology was used in order to reduce the production of secondary radioactive wastes. It was also used to minimize the damage that was caused to the base material and to remove the contaminated oxide film. The study was carried out using a Stainless steel 304 specimen that was coated with nickel-ferrite particles. Additionally, a transport robot was 3D modeled and manufactured in order to efficiently remove the oxide film from the coolant pipe of the nuclear power plant. The transport robot has a fixed laser head to move inside the horizontal and vertical pipes. The rotating laser head removes the contaminated oxide film on the inner surface of the coolant pipe. In the future, as a condition of the 1064nm short-pulsed laser ablation technique determined by basic analysis, we plan to analyze whether the transport robot is applicable to the radiation contamination site of the nuclear power plant.
        8.
        2023.05 구독 인증기관·개인회원 무료
        Concrete decontamination tools capable of removing the nuclear contaminated surface are necessary to minimize the amount of concrete waste generated in the process of decontamination and dismantling of nuclear power plants. Laser scabbling is a decontamination technique that removes the contaminated surface layers concrete surface by inducing internal explosion. The application principle of laser scabbling technology uses the porous nature of concrete including moisture. When high thermal energy is applied to the concrete surface, an explosion at pores is induced along with an increase in water vapor pressure. High-powered laser beam can be an effective induction source of local explosive spalling on concrete surface. In this study, the scabbling test using a 5 kW highpowered fiber laser was conducted on the concrete blocks to establish the optimal conditions for surface decontamination. It was also measured the volume peeled off the concrete surface under the conditions of two different laser head speeds. Furthermore, we tested the removal efficiency of radioactive concrete particles generated during high-power fiber laser scabbling process. A 5 kW laser beam was applied to the concrete surface at two different laser head speeds - 120 mm/min and 600 mm/min. The laser beam repeatedly moved 200 mm horizontally and 40 mm vertically within the concrete block. The amount of surface concrete removed from concrete block was calculated from the measurement of the volume and mean depth using a 3D scanner device (laser-probed Global Advantage 9.12.8(HEXAGON)) for the two different the laser head speeds. By increasing the laser head speed, less explosive spalling occurred due to shorter contact time of the laser beam with the concrete. The laser head speed of 600 mm/min reduced about 89% of the waste generated by shallow depth of scabbling as compared to the waste generated at the laser head speed of 120 mm/min. The fiber laser scabbling system was developed for surface decontamination of radioactive concrete in nuclear power plants. Tests were performed to find the optimum parameters to reduce the generation of particulate waste from the contaminated concrete surface by controlling the laser head speeds. It was confirmed that the wastes from surface decontamination was reduced up to 89% by increasing laser head speed from 120 mm/min to 600 mm/min. It was also observed that the cylindrical tube effectively vacuumed the debris generated by the explosive spalling into the collector. Removal efficiencies of concrete particles were measured greater than 99.9% with ring blower power of 650 air watt of the filter system.
        9.
        2023.05 구독 인증기관·개인회원 무료
        Laser cutting has been recognized as one of key techniques in dismantling nuclear power plants as it has several advantages such as a remote operation and a reduced secondary waste. However, it generates a significant amount of aerosols that can pose a health risk to workers and further induce environmental pollution during the cutting operation. Thus, understanding the aerosol characteristics generated by the laser cutting is crucial for implementing an effective cutting operation and reducing the exposure to these hazardous particles. In this work, we established a methodology to collect the aerosols and investigate their properties in the laser cutting operation. We built an integrated laser cutting system for aerosol analyses, consisting of a high-power laser cutting module, a metal sample holder, an aerosol collector, and a closed chamber. We expect that this system will offer an opportunity for in-depth understanding of the aerosol properties, by connecting it with desired type of aerosol analysis platforms, and further safe dismantling operation of the nuclear power plants.
        10.
        2022.10 구독 인증기관·개인회원 무료
        Laser cutting has been attracting attention as a next-generation tool in application for nuclear decommissioning. It enables high-speed cutting of thick metal objects, and its narrow kerf width greatly reduces the amount of secondary waste compared to other cutting methods. In addition, it only requires the relatively small cutting head without any complicated equipment, and long-distance cutting apart from a laser generator is possible using beam delivery through optical fiber. And there is almost no reaction force because it is non-contact thermal cutting. For these reasons, the laser cutting is very advantageous for remote cutting. In laser cutting, the irradiated laser power is absorbed and consumed to melt the material of the cutting target. When the applied laser power is greater than the power consumed for melting, the residual power is transmitted to the back of the cut object. This residual power may unintentionally cut or damage undesired objects located behind the cutting target. In order to prevent this, it is necessary to adjust the laser power for each thickness of the target object to be cut, or to increase the distance between the cut target and the surrounding structures so that the transmitted power density can be sufficiently lowered. In this work, safety study on residual power that penetrates laser-cut objects was conducted. Experimental studies were performed to find safe conditions for irradiation power density that does not cause surface damage to the stainless steel by adjusting the laser power and stand-off distance from the target.
        13.
        2021.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A laser scabbling experiment was performed using a high-power fiber laser to investigate the removal rate of the concrete block and the scabbled depth. Concrete specimens with a 28-day compressive strength of 30 MPa were used in this study. Initially, we conducted the scabbling experiment under a stationary laser beam condition to determine the optimum scan speed. The laser interaction time with the concrete surface varied between 3 s and 40 s. The degree of spalling and vitrification on the surface was primarily dependent on the laser interaction time and beam power. Furthermore, thermal images were captured to investigate the spatial and temporal distribution of temperature during the scabbling process. Based on the experimental results, the scan speed at which the optical head moved over the concrete was set to be 300 mm∙min−1 or 600 mm∙min−1 for the 4.8-kW or 6.8-kW laser beam, respectively. The spalling rates and average depth on the concrete blocks were measured to be 87 cm3∙min−1 or 227 cm3∙min−1 and 6.9 mm or 9.8 mm with the 4.8-kW or 6.8-kW laser beams, respectively.
        4,000원
        14.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Due to stricter environmental regulations of the International Maritime Organization (IMO), the number of ships fueled by Liquefied Natural Gas (LNG) is rapidly increasing. The International Code of the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk (IGC Code) limits the material of tanks that can store cryogenic substances such as LNG. Among the materials listed in the IGC Code, ASTM A553M-17 has been recently adopted as a material for LNG fuel tank projects because of its excellent mechanical properties at cryogenic temperatures. In shipyards, this material is being used to build tanks through Flux Cored Arc Welding (FCAW). However, there is a problem that magnetization occurs during welding and there is a big difference in welding quality depending on the welding position. In order to overcome this problem, this study intends to conduct basic research to apply laser welding to ASTM A553M-17 material. In Part I, the bead shape according to the welding output was analyzed and in PART II, ​​the penetration phenomenon according to the welding speed was analyzed after Bead on Plate (BOP) test. As a result of analyzing the bead shape according to laser power performed in this study, it was confirmed that the laser power and penetration depth are proportional to some extent. In addition, a range of suitable welding power was proposed for the 6.1mm thickness material performed in this study.
        4,000원
        15.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The multi-layered heat source model is a model that can cover most of existing studies and can be defined with a simple formula. Based on the methodology performed in previous studies, the welding heat source was found through experiments and FEM under the welding power conditions of three cases and the parameters of the welding heat source were analyzed according to the welding power. In this study, parameters of fiber laser welding heat source according to welding power were searched through optimization algorithm and finite element analysis, and the correlation was analyzed. It was confirmed that the concentration of the welding heat source in the 1st layer was high regardless of the welding power, and it was confirmed that the concentration of the welding heat source in the 5th layer (last layer) increased as the welding power increased. This reflects the shape of the weld bead that appears during actual fiber laser welding, and it was confirmed that this study represents the actual phenomenon.
        4,000원
        18.
        2012.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study purposed to examine the effect of low power laser on pain response and axonal regeneration. In order to prepare peripheral nerve injury models, we crushed the sciatic nerve of Sprague-Dawley rats and treated them with low power laser for 21 days. The rats were divided into 4 groups: normal group(n=10); control group(n=10) without any treatment after the induction of sciatic nerve crush injury; experimental group I(n=10) treated with low power laser(0.21mJ/㎟) after the induction of sciatic nerve crush injury; and experimental group II(n=10) treated with low power laser(5.25mJ/㎟) after the induction of sciatic nerve crush injury. We measured spontaneous pain behavior(paw withdrawal latency test) and mechanical allodynia(von Frey filament test) for evaluating pain behavioral response, and measured the sciatic function index for evaluating the functional recovery of peripheral nerve before the induction of sciatic nerve crush injury and on day 1, 7, 14 and 21 after the induction. After the experiment was completed, changes in the H & E stain and toluidine blue stain were examined histopathologically, and changes in MAG(myelin associated glycoprotein) and c-fos were examined immunohistologically. According to the results of this study, when low power laser was applied to rat models with sciatic nerve crush injury for 21 days and the results were examined through pain behavior evaluation and neurobehavioral, histopathological and immunohistological analyses, low power laser was found to affect pain response and axonal regeneration in both experimental group I and experimental group II. Moreover, the effect on pain response and axonal regeneration was more positive in experimental group I to which output 0.21mJ/㎟ was applied than in experimental group II to which 5.25mJ/㎟ was applied.
        4,200원
        19.
        2009.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Recently, metal molding has become essential not only for automobile parts, but also mass production, and has greatly influenced production costs as well as the quality of products. Its surface has been treated by carburizing, nitriding and induction hardening, but these existing treatments cause considerable deformation and increase the expense of postprocessing after treatment; furthermore, these treatments cannot be easily applied to parts that requiring the hardening of only a certain section. This is because the treatment cannot heat the material homogeneously, nor can it heat all of it. Laser surface treatment was developed to overcome these disadvantages, and, when the laser beam is irradiated on the surface and laser speed is appropriate, the laser focal position is rapidly heated and the thermal energy of surface penetrates the material after irradiation, finally imbuing it with a new mechanical characteristic by the process of self-quenching. This research estimates the material characteristic after efficient and functional surface treatment using HPDL, which is more efficient than the existing CW Nd:YAG laser heat source. To estimate this, microstructural changes and hardness characteristics of three parts (the surface treatment part, heat affect zone, and parental material) are observed with the change of laser beam speed and surface temperature. Moreover, the depth of the hardened area is observed with the change of the laser beam speed and temperature.
        4,000원
        20.
        2008.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was designed to determine the effects of swimming and low power laser on rheumatoid arthritis in Sprague-Dawley rats. Rheumatoid arthritis was induced in 36 rats among 48 Sprague-Dawley rats by the subcutaneous injection of .05 ㎖ Freund's Complete Adjuvant into the right hind paw and .05 ㎖ Freund's Complete Adjuvant into the right hind knee joint capsule. A second injection was performed by the same method using .1 ㎖ Freund's Complete Adjuvant per a rat. Arthritic rats were divided into 8 groups: each 1 week and 2 weeks of arthritic swimming, arthritic laser, arthritic case control and normal group. In this study, several experimental tests were performed to determine the concentration of Interleukin-6, the space of the knee joint and the thickness of the hind paw. The concentration of Interleukin-6 and hind paw thickness decreased in the swimming group and laser group as compared to the control group. The space of the knee joint increased significantly after the swimming exercise. Swimming and low power laser therapy positively affect rheumatoid arthritis in rats affect by decreasing the concentration of Interleukin-6 and hind paw thickness, and increasing the space of the knee joint.
        4,000원
        1 2