검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 112

        21.
        2016.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Ti films were deposited on glass substrates under various preparation conditions in a chamber of two-facing-target type dc sputtering; after deposition, the electric resistivity values were measured using a conventional four-probe method. Crystallographic orientations and microstructures, including the texture and columnar structure, were also investigated for the Ti films. The morphological features, including the columnar structures and surface roughness, are well explained on the basis of Thornton’s zone model. The electric resistivity and the thermal coefficient of the resistivity vary with the sputtering gas pressure. The minimum value of resistivity was around 0.4 Pa for both the 0.5 μm and 3.0 μm thick films; the apparent tendencies are almost the same for the two films, with a small difference in resistivity because of the different film thicknesses. The films deposited at high gas pressures show higher resistivities. The maximum of TCR is also around 0.4 Pa, which is the same as that obtained from the relationship between the resistivity and the gas pressure. The lattice spacing also decreases with increasing sputtering gas pressure for both the 0.5 μm and 3.0 μm thick films. Because they are strongly related to the sputtering gas pressures for Ti films that have a crystallographic anisotropy that is different from cubic symmetry, these changes are well explained on the basis of the film microstructures. It is shown that resistivity measurement can serve as a promising monitor for microstructures in sputtered Ti films.
        4,000원
        22.
        2015.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Evaluations of the microstructure and mechanical properties of age hardenable Cu-2.0wt%Be alloy are performed in order to determine whether it can be used as a welding electrode for projection welding. The microstructure examinations, hardness measurements, and tensile tests of selective aging conditions are conducted. The results indicate that the aging treatment with the fine-grained microstructure exhibits better hardness and high tensile properties than those of the coarsegrained microstructure. The highest hardness value and high tensile strength are obtained from the aged condition of 300 oC for 360 min due to the presence of the metastable γ. precipitates on the grain boundaries. The values of the highest hardness and tensile strength are measured as 374 Hv and 1236.2 MPa, respectively. The metastable γ. precipitates are transferred to the equilibrium γ precipitates due to the over-aged treatment. The presence of the γ precipitates appears as nodule-like precipitates decorated around the grain boundaries. The welding electrode with the best aging treated condition exhibits better welding performance for electrodes than those of electrodes used previously.
        4,000원
        23.
        2015.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We evaluated the developed microstructures and mechanical properties of a severely plastically deformed Ni-30Cr alloy. Normal rolling and differential speed rolling were used as deformation processes, and the thicknesses of the specimens were reduced to 68 % of the original thickness after holding at 700 oC for 10 min and annealing at 700 oC for 40 min to obtain a fully recrystallized microstructure. Electron backscattering diffraction was used to analyze the characteristic distribution of the grain boundaries on the deformed and annealed specimens. Differential speed rolling was more effective for refining grains in comparison with normal rolling. The grain size was refined from 33 mm in the initial material to 8.1 mm with normal rolling and 5.5 mm with differential speed rolling. The more refined grain in the differential-speed-rolled material directly resulted in increases in the yield and tensile strengths by 68 % and 9.0%, respectively, compared to normal rolling. We systematically explain the relationship between the grain refinement and mechanical properties through a plastically deformed Ni-30Cr alloy based on the development of a deformation texture. The results of our study show that the DSR process is very effective when used to enhance the mechanical properties of a material through grain refinement.
        4,000원
        24.
        2014.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study is a basic research for repair material production which manufactured a Cu repair coating layer on the base material of a Cu plate using kinetic spray process. Furthermore, the manufactured material underwent an annealing heat treatment, and the changes of microstructure and macroscopic properties in the Cu repair coating layer and base material were examined. The powder feedstocks were sphere-shaped pure Cu powders with an average size of 27.7μm. The produced repair coating material featured 600μm thickness and 0.8% porosity, and it had an identical α-Cu single phase as the early powder. The produced Cu repair coating material and base material displayed extremely high adhesion characteristics that produced a boundary difficult to identify. Composition analysis confirmed that the impurities in the base material and repair coating material had no significant differences. Microstructure observation after a 500℃/1hr. heat treatment (vacuum condition) identified recovery, recrystallization and grain growth in the repair coating material and featured a more homogeneous microstructure. The hardness difference (δHv) between the repair coating material and base material significantly reduced from 87 to 34 after undergoing heat treatment.
        4,000원
        25.
        2014.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, nano-scale copper powders were reduction treated in a hydrogen atmosphere at the relativelyhigh temperature of 350℃ in order to eliminate surface oxide layers, which are the main obstacles for fabricating anano/ultrafine grained bulk parts from the nano-scale powders. The changes in composition and microstructure beforeand after the hydrogen reduction treatment were evaluated by analyzing X-ray diffraction (XRD) line profile patternsusing the convolutional multiple whole profile (CMWP) procedure. In order to confirm the result from the XRD lineprofile analysis, transmitted electron microscope observations were performed on the specimen of the hydrogen reduc-tion treated powders fabricated using a focused ion beam process. A quasi-statically compacted specimen from the nano-scale powders was produced and Vickers micro-hardness was measured to verify the potential of the powders as thebasis for a bulk nano/ultrafine grained material. Although the bonding between particles and the growth in size of theparticles occurred, crystallites retained their nano-scale size evaluated using the XRD results. The hardness results dem-onstrate the usefulness of the powders for a nano/ultrafine grained material, once a good consolidation of powders isachieved.
        4,000원
        26.
        2013.09 구독 인증기관 무료, 개인회원 유료
        Periodontal inflammation increases the risk of tooth loss, particularly in cases where there is an associated loss of alveolar bone and periodontal ligament (PDL). Histological and morphometric evaluation of periodontal inflammation is difficult. Especially, the lengths of the periodontal ligament and interdental alveolar bone space have not been quan-tified. A quantitative imaging procedure applicable to an animal model would be an important clinical study. The purpose of this study was to quantify the loss of alveolar bone and perio-dontal ligament by evaluation with micro-computed tomo-graphy (micro-CT). Another purpose was to investigate diffe-rences in infections with systemic E. coli LPS and TNF-α on E. coli lipopolysaccharide (LPS) in loss of alveolar bone and periodontal ligament model on mice. This study showed that linear measurements of alveolar bone loss were repre-sented with an increasing trend of the periodontal ligament length and interdental alveolar process space. The effects of systemic E. coli LPS and TNF-α on an E. coli LPS-induced periodontitis mice model were investigated in this research. Loss of periodontal ligament and alveolar bone were eval-uated by micro-computed tomography (micro-CT) and cal-culated by the two- and three dimensional microstructure morphometric parameters. Also, there was a significantly increasing trend of the interdental alveolar process space in E. coli LPS and TNF-α on E. coli LPS compared to PBS. And E. coli LPS and TNF-α on E. coli LPS had a slightly increa-sing trend of the periodontal ligament length. The increa-sing trend of TNF-α on the LPS-induced mice model in this experiment supports the previous studies on the contribu-tion of periodontal diseases in the pathogenesis of systemic diseases. Also, our findings offer a unique model for the study of the role of LPS-induced TNF-α in systemic and chronic local inflammatory processes and inflammatory diseases. In this study, we performed rapidly quantification of the perio-dontal inflammatory processes and periodontal bone loss using micro-computed tomography (micro-CT) in mice.
        4,000원
        27.
        2012.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper reports the microstructures and thermal conductivities of -SiC composite ceramics with size and amount of SiC. We fabricated sintered bodies of -x vol.% SiC (x=10, 20, 30) with submicron and nanosized SiC densified by spark plasma sintering. Microstructure retained the initial powder size of especially SiC, except the agglomeration of nanosized SiC. For sintered bodies, thermal conductivities were examined. The observed thermal conductivity values are 40~60 W/mK, which is slightly lower than the reported values. The relation between microstructural parameter and thermal conductivity was also discussed.
        4,000원
        28.
        2011.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper reports the effect of sintering processes and additives on the microstructures and mechanical properties of -SiC composite ceramics. We fabricated sintered bodies of -20 vol.% SiC with or without sintering additive, such as C or , densified by spark plasma sintering as well as hot pressing. While almost full densification was achieved regardless of sintering processes or sintering additives, significant grain growth was observed in the case of spark plasma sintering, especially with . With sintered bodies, mechanical properties, such as flexural strength and Vickers hardness, were also examined.
        4,000원
        29.
        2011.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Flat rolling of wire is an industrial process used to manufacture electrical flat wire, medical catheters, springs, piston segments and automobile parts, among other products. In a multi-step wire flat rolling process, a wire with a circular crosssection is rolled at room temperature between two flat rolls in several passes to achieve the desired thickness to width ratio. To manufacture a flat wire with a homogeneous microstructure, mechanical and metallurgical properties with an appropriate pass schedule, this study investigated the effect of each pass schedule (1stand ~ 4stand) on the microstructures, mechanical properties and widths of cold rolled high carbon steel wires using four-pass flat rolling process. The evolutions of the microstructures and mechanical properties of the widths of cold rolled wires during three different pass schedules of the flat rolling process of high carbon wires were investigated, and the results were compared with those for a conventional eight-pass schedule. In the width of cold rolled wires, three different pass schedules are clearly distinguished and discussed. The experimental conditions were the same rolling speed, rolling force, roll size, tensile strength of the material and friction coefficient. The experimental results showed that the four-pass flat cold rolling process was feasible for production of designed wire without cracks when appropriate pass schedules were applied.
        4,000원
        30.
        2008.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Directional solidification experiments were carried out at 1-300 μm/sec solidification rates in the single crystal superalloy, CMSX 10. The solid/liquid interface morphology changed from planar to dendritic, and the dendrite spacing became finer as the solidification rate increased. The pool size of the γ/γ' eutectic, formed between dendrites, reduced as the solidification rate increased. The phase formation temperatures, such as the solidus, liquidus and eutectic, were estimated by differential scanning calorimetry (DSC) analysis. The morphology of the γ/γ' phase, known to be eutectic, showed γ' cells with a γ intercellular network, and this γ/γ' was composed of coarse and fine γ/γ' regions. In this study, it is suggested that the γ/γ' phase was a coupled peritectic.The solidification procedure of the γ/γ' between dendrites is also discussed.
        4,000원
        32.
        2006.09 구독 인증기관·개인회원 무료
        The microstructure and mechanical properties of the alloy prepared by spark plasma sintering of gas atomized powders have been investigated. After consolidation, precipitates were observed to form in the solid solution matrix of the alloy. These precipitates consisted of and phases. The density of the consolidated bulk Mg-Zn-Y alloy was . The ultimate tensile strength and elongation were dependent on the consolidation temperature, which were in the ranges of 280 to 293 MPa and 8.5 to 20.8 %, respectively.
        33.
        2006.09 구독 인증기관·개인회원 무료
        The microstructures and properties of pure molybdenum wire and Mo-La2O3 alloy wire annealed at different temperatures are investigated systematically in this paper. It is shown that the recrystallization temperature, toughness and strength at room temperature of this wire was increased greatly by addition of La2O3. The room temperature embrittlement of this wire annealed at high temperature is improved remarkably.
        34.
        2006.09 구독 인증기관·개인회원 무료
        Tungsten heavy alloys with different ratios of Mo and Ni-Fe matrix were liquid-phase-sintered to investigate their microstructural evolution. Results indicated that increased Mo in the alloy promoted the formation of a (W,Mo)(Ni,Fe) type intermetallic compound in the furnace-cooled condition. It was a monoeutectic reaction when the added Mo content was higher than 49at.%, or a eutectic reaction when this value was between 37at,% to 49at.%. When Mo was added between 25at.% to 37at.%, the precipitation of the intermetallic compound took place by either a eutectoid or peritectoid reaction.
        36.
        2006.04 구독 인증기관·개인회원 무료
        Correlations between in-flight particle, splat and coating microstructure of thermally sprayed Ni20Cr were investigated. Flame spray and arc spray systems were employed for spraying Ni20Cr powder and Ni20Cr wire, respectively. The results showed that the arc spray process produced a broader size distribution for both in-flight particles and splats compared to flame process. Flower-like splat morphology was obtained from the arc spray whereas a pancake-like splat was obtained by flame spray. Ni20Cr coating sprayed by arc process had a denser microstructure, lower porosity and better adhesion at the interface.
        1 2 3 4 5