검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 87

        21.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The objective of this study is to analyze the uniform diffusion mechanism of precursor gas species, and the effect of NOx reduction technology in a full-scale particulate matter testing facility, using computational fluid dynamics (CFD). METHODS : A full-scale environment chamber was constructed to evaluate the effects of particulate matter reduction technologies on the road. CFD analysis was conducted to simulate the road environment conditions in the chamber, and investigate the effect of the NOx removal panel. The time required to reach the NOx concentration to target value in the fluid field was determined at a given inflow velocity, inlet direction, and initial inflow concentration. The effect of the NOx removal panel, and solar energy on the reduction characteristics of the NOx concentration in the environment chamber was analyzed. RESULTS : The inflow velocity was determined to be the major factor affecting the time required to reach a uniform target NOx concentration in the environment chamber. The inlet location in the transverse direction requires additional time to approach the uniform target concentration, than the longitudinal direction at the same inflow velocity. Based on the CFD analysis in the 1ppm concentration condition of the chamber, a two-fold increase in the NOx removal panel efficiency can reduce the time to target concentration by approximately 50%. It is also observed that a 20% increase in solar energy can decrease the time to target concentration by 4%–12% depending on the panel efficiency. CONCLUSIONS : This study proved that a full-scale environment chamber can be effectively utilized to evaluate the particulate matter reduction technologies applied in road facilities
        4,000원
        23.
        2021.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study obtained the following conclusions using the measurement results of indoor and outdoor PM10 with regard to cardiovascular disease patients in Cheongju-area in November 2020. Most of the PM10 has an I/O ratio of less than 1, which is an outdoor source. Since we measured once and twice time, Without the air purifier device’s working status, there were no concentration changes of PM10 in the first and second indoor areas. As for the concentration of PM10 according to the living environment, the distribution of PM10 is higher indoors than outdoors when the residential area is 30 m2 or more, and the outdoor PM10 concentration tends to be high when the distance to the road is within 50 m. The more time spent indoors, the higher the indoor PM10 concentration. The smaller the ventilation time and frequency, the longer the cooking time was, and the higher the number of cooking times, the higher the concentration of PM10 could be. The indoor PM10 contribution ratio through multiple regression analysis showed the possibility of increasing indoor PM10 as β = 28.590 when the time spent indoors was longer than 16 hours (p<0.05). The result regarding PM10 exposure reveals that PM10 can be inhaled not only indoors but also outdoors, and the subjects of this study appear to have lived indoors for about 16 hours or longer on a daily basis, which may affect their health regardless of gender.
        4,000원
        24.
        2021.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The emission of particulate matter and volatile organic compounds (VOCs) from a motor vehicle painting booth was quantitatively evaluated. Most particulate matter was emitted during the spraying process, in which the PM10 concentration was 16.5 times higher than that of the drying process. When the paint was being sprayed, the particles with a diameter of 1.0~2.5 μm accounted for 39.4% and particles greater than 2.5 μm in diameter accounted for 30.6% of total particles. On the other hand, small particles less than 0.5 μm in diameter accounted for 52.4% of total particles during the drying process. In contrast to the particulate matter, high concentrations of VOCs were emitted during both spraying and drying processes. Butyl acetate, xylene, toluene, and m-ethyltoluene were the most abundant VOCs emitted from the motor vehicle painting booth. Additionally, xylene, butyl acetate, toluene, and 1,2,3-trimethylbenzene were the dominant ozone precursors. Especially, xylene exhibited the highest ozone production contribution (32.5~44.4%) among 34 species of the ozone precursors. The information obtained in this study can be used to establish a suitable management strategy for air pollutants from motor vehicle painting booths.
        4,200원
        25.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : Nitrogen oxides (NOx) are the main precursors to generate fine particulate matter, which significantly contribute to air pollution. NOx gases are transmitted into the atmosphere in large quantities, especially in areas with a high volume of traffic. Titanium dioxide (TiO2), which is a photocatalytic reaction material, is very efficient for removing NOx. The application of TiO2 to concrete road structures is a good alternative to remove NOx. Generally, TiO2 concrete is produced by mixing concrete with TiO2 . However, a significant amount of TiO2 in concrete cannot be exposed to air pollutants or UV. Therefore, an alternative method of penetrating TiO2 into horizontal concrete structures using a surface penetration agent was proposed in a previous study. This method may not only be economical but also applicable to various types of horizontal concrete structures. However, the TiO2 penetration method may not be applied to vertical structures because it has a mechanism for the penetration of TiO2-containing penetration agents via gravity and capillary forces. Therefore, this study aimed to evaluate the applicability of the pressurized TiO2 fixation method for existing vertical road structures. METHODS : For the application of vertical concrete structures — such as retaining walls, side ditches, and barriers — the applicability of a static and dynamic pressurized TiO2 fixation method was evaluated according to the experimental conditions, considering the amount of pressure and time. The penetration depth and distribution of TiO2 particles in the concrete specimen were measured using SEM/EDAX. In addition, the NOx removal efficiencies of TiO2 concrete were evaluated using the NOx analysis system. RESULTS : As a result of measuring the penetration depth and distribution of TiO2 in the concrete, it was found that the surface-predicted mass ratio increased with increasing pressure and time. In the case of the static pressurized fixation method, it was confirmed that a pressure time of at least 10 s at a pressure of 0.2 MPa and 5 s at a pressure higher than 0.3 MPa were required to achieve a NOx removal efficiency higher than 40 %. Conversely, for the dynamic pressurized fixation method applying a hitting energy of 16.95 J, NOx removal efficiencies higher than 50 % were secured in a pressure time of more than 3 s. CONCLUSIONS : The results of this study showed that the static and dynamic pressurized TiO2 fixation method was advantageous in penetrating and distributing TiO2 particles into the concrete surface to effectively remove NOx. It was confirmed that the proposed method to remove NOx was sufficiently applicable to existing vertical concrete road structures.
        4,200원
        26.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        대기 중 미세먼지가 환경과 인간의 공중 보건에 악영향을 미치고 있다는 사실은 점점 명확해지고 있다. 미세먼지가 식물의 잎에 침착, 흡수되므로 식물이 미세먼지를 제거 하는 바이오필터로 활용하기 위한 연구들이 활발히 진행 되고 있다. 또한, 식물에 흡수된 미세먼지는 식물에 다양한 생리적, 형태적 영향을 미치게 된다. 본 연구는 식물과 미세먼지간의 상호작용에 대해 국내외에서 수행되어온 연구들의 방법과 결과를 특히 생태적 관점에서 종합 정리하였다.
        4,000원
        27.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, we conducted a survey to reveal the general perception of parents toward outdoor air quality, particulate matter (PM), and indoor air quality (IAQ) at schools where their children attend. A total of 1,030 parents participated in this survey, where the age of their children ranged between 7 years to over 19 years of age. Each participant was either a member of a non-governmental organization (NGO) with a keen interest in air quality or an ordinary public panel member with less interest. The result of the survey indicated that the participants had a negative perception of air quality, and parents believed that the outdoor and indoor air is extremely polluted. The participants pointed out that they believe that the main reason for the pollution is due to particulate matter (PM) and school classrooms are the location where their children are exposed to PM the most. Based on our study, the majority of the participants prefer a mechanical ventilation system to reduce indoor air pollutants in schools. Our study should be referred to by school officials in order to maintain IAQ and as a way of addressing the concerns of parents who want to protect their children’s health.
        4,000원
        28.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : In this study, the characteristics of fine particulate matter (PM2.5) concentrations under different weather conditions of different types of bus stops, such as enclosed-type and open-type bus stops, were analyzed using statistical methods. METHODS : Data was collected inside and outside an enclosed bus stop on sunny and rainy days to compare and analyze the characteristics of fine particulate matter concentration in the target bus stop. The probability distributions were estimated for each data point using the Anderson–Darling test. Based on the estimated probability distributions, probability density functions were computed, and the values were used to estimate and compare probability for each air quality index inside and outside the bus stop under different weather conditions RESULTS : For the results of descriptive statistics, the average concentrations of fine particulate matter inside and outside the bus stop were 42.296 and 35.482 μg/m3 on a sunny day and 40.831 and 39.321 μg/m3 on a rainy day, respectively. Results of the statistical method, obtained using the Anderson-Darling test, indicate that the probability of the air quality index inside the bus stop reaching high concentrations on a sunny day was "high" or "very high," compared to that outside the bus stop. However, on rainy days, the differences in fine particulate matter concentrations inside and outside the bus stops were difficult to identify based on statistical evidence. CONCLUSIONS : It was found that the open-type bus stop had an advantage of preventing fine particulate matter effects on sunny days, compared to the enclosed-type bus stops. Furthermore, there were slight differences in fine particulate matter concentrations inside and outside the bus stop on a rainy day because of atmospheric flow and stormwater.
        4,000원
        29.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : A pilot experimental study on the formation of fine particulate matter through photochemical reactions using precursor gas species (volatile organic compounds (VOCs), NH3, SO2, and NOx) was conducted to evaluate the large-scale environment chamber for investigating the pathway of aerosol formation and the subsequent assessment techniques used for reducing fine particulate matter. Two small-scale environment chambers (one experimental group and one control group), each with a width, depth, and height of 3 m, 2 m, and 2.3 m, respectively, were constructed using ethylene tetrafluoroethylene (ETFE) films. METHODS : The initial conditions of the fine particles and precursor gases (NOx and VOCs) for the small-scale environment chamber were set up by injecting diesel vehicle exhaust. NH3 and H2O2 were added to the small-scale environment chamber for the photochemical reaction to form organic and inorganic aerosols. The gas phase of the VOCs and the chemical compositions of aerosols were investigated using a proton transfer reaction time-of-flight mass spectrometer and the aerodyne high-resolution time-of-flight aerosol mass spectrometer at 1 and 10 s time resolutions, respectively. Gas phases of NO and NO2 were measured using Serinus 40 NOx at a 20 s time resolution. RESULTS : The small-scale environment chambers built using ETFE films were proved to supply sufficient natural sunlight for the photochemical reaction in the environment chambers at an average of approximately 89% natural sunlight transmission at 300–1000 nm. When the intermediates of NH3 and H2O2 for the atmospheric chemical reaction were injected for the initial condition of the small-scale environment chamber, nitrate and ammonium in the experimental group increased to 4747% and 1837%, respectively, compared to the initial concentrations (5.4 μg/m3 of nitrate and 5.2 μg/m3 of ammonium), indicating the formation of secondary inorganic aerosols of ammonium nitrate (NH4NO3). This implies that it is necessary to inject intermediates (NH3 and H2O2) for the formation of fine particulate matter when simulating the atmospheric photochemical reaction for assessing the environment chamber. CONCLUSIONS : This study has shown that small-scale environment chambers can simulate the atmospheric photochemical reaction for the reduction of fine particulate matter and the formation of the aerosol pathway. The results of this study can be applied to prevent time and economic losses that may be incurred in a full-scale environment chamber.
        4,200원
        30.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : NOx is a particle matter precursor that is harmful to humans. Various methods of removing NOx from the air have been developed. TiO2 and activated carbon are particularly useful materials for removing NOx, and the method is known as particulate matter precursor reduction. The removal of NOx using TiO2 requires sunlight for the photocatalytic reaction, whereas activated carbon absorbs NOx particles into its pores after contact with the atmosphere. The purpose of this study is to evaluate the NOx removal efficiency of TiO2 and activated carbon applied to concrete surfaces using the penetration method. METHODS : Surface penetration agents, such as silane-siloxane and silicate, were used. Photocatalyst TiO2 and adsorbent activated carbons were selected as the materials for NOx removal. TiO2 used in this study was formed by crystal structures of anatase and rutile, and plant-type and coal-type materials were used for the activated carbon. Each surface penetration agent was mixed with each particulate matter sealer at a concentration ratio of 8:2, and the mixtures were sprayed onto the surface. The NOx removal efficiency was evaluated using NOx removal efficiency equipment fabricated in compliance with the ISO 22197-1 standard. RESULTS : Anatase TiO2 showed a maximum NOx removal efficiency of 48% when 500 g/m² was applied. However, 500 g/m² of rutile TiO2 showed a NOx removal efficiency of up to 10%. When 700 g/m² of coal-based activated carbon and plant-based activated carbon was used, NOx removal efficiencies of up to 11% and 14%, respectively, were obtained. CONCLUSIONS : Rutile TiO2, a coal-based activated carbon, and plant-based activated carbon have lower NOx removal efficiencies than anatase TiO2. A lower amount of anatase TiO2 (500 g/m²), compared to the other spraying volumes, yielded the most significant NOx removal efficiency under optimal conditions. Therefore, it is recommended that 500 g/m² of anatase TiO2 should be sprayed onto concrete structures to improve the economic and long-term performance of these structures.
        4,200원
        31.
        2020.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        목적 : 미세먼지가 콘택트렌즈 착용자의 눈물막에 영향을 미치는지 알아보고자 미세먼지 농도 수준에 따라 콘 택트렌즈 착용 후 눈물의 양과 안정성의 변화를 평가하였다. 방법 : 안질환이 없고 안경과 콘택트렌즈를 모두 착용하는 20대 근시안 31명을 대상으로, 하루 8시간씩 하루 착용 소프트 콘택트렌즈(L사, 함수율 55%)를 착용하도록 하였다. 대상자는 OSDI 값을 기준으로 정상안과 건성안 으로 세분하여 분석하였다. 미세먼지 농도는 한국환경공단에서 제공된 값을 기준으로 좋음(0~30 ㎍/m³)과 나쁨 (51~100 ㎍/m³) 수준으로 구분하고, 미세먼지 농도가 좋음과 나쁨 수준인 날에 모두 눈물검사를 실시하였다. 눈 물양은 OCCUTUBE(OccuTech Co., LTD, Seongnam, Korea)로, 안정성은 침습성눈물막파괴시간(TBUT)과 비 침습성눈물막파괴시간(NIBUT)으로 평가하였고, 미세먼지 수준에 따른 비교는 SPSS version 21.0(SPSS Inc, Chicago, IL, USA)를 사용하여 분석하였다. 결과 : 미세먼지 나쁨 수준에서 눈물의 양과 안정성은 안경 및 콘택트렌즈 착용 시 모두 유의하게 감소하여(p<.050), 건성안 범주의 값으로 측정되었다. 콘택트렌즈 착용은 미세먼지 좋음 수준에서도 안경착용과 비교하여 눈물양이 감소하였고, 미세먼지 나쁨 수준에서는 TBUT가 감소하였다. 특히 건성안에서는 미세먼지 나쁨 수준에서 콘택트렌즈를 착용한 경우에 정상안보다 TBUT가 유의하게 감소하였다. 결론 : 미세먼지는 눈물의 양과 안정성을 모두 감소시켜 건성안 유발요인으로 작용하는 것으로 사료되며, 미세 먼지 나쁨 수준에서 콘택트렌즈 착용은 눈물막 안정성을 나쁘게 하여 건성안의 경우 증상이 더욱 악화될 수 있으 므로 미세먼지 나쁨 수준인 날에는 건성안 예방을 위하여 안경착용을 권고해야 할 것으로 생각된다.
        4,000원
        32.
        2020.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study analyzes the characteristics of generated fine particulate matter (PM2.5) and nitrogen oxide (NOX) at roadsides using a statistical method, namely, a generalized linear model (GLM). The study also investigates the applicability and capability of a machine learning methods such as a generalized regression neural network (GRNN) for predicting PM2.5 and NOX generations. METHODS : To analyze the characteristics of PM2.5 and NOX generations at roadsides, data acquisition was conducted in a specific segment of roads, and PM2.5 and NOX prediction models were estimated using GLM. In addition, to investigate the applicability and capability of a machine learning methods, PM2.5 and NOX prediction models were estimated using a GRNN and were compared with models employing previously estimated GLMs using r-square, mean absolute deviation (MAD), mean absolute percentage error (MAPE), and root mean square error (RMSE) as parameters. RESULTS : Results revealed that relative humidity, wind speed, and traffic volume were significant for both PM2.5 and NOX prediction models based on estimated models from a GLM. In addition, to compare the applicability and capability of the GLM and GRNN models (i.e., PM2.5 and NOX prediction models), the GRNN model of PM2.5 and NOX prediction was found to yield better statistical significance for r-square, MAD, MAPE, and RMSE as compared with the same parameters used in the GLM. CONCLUSIONS : Analytical results indicated that a higher relative humidity and traffic volume could lead to higher PM2.5 and NOX concentrations. By contrast, lower wind speed could affect higher PM2.5 and NOX concentrations at roadsides. In addition, based on a comparison of two statistical methods (i.e., GLM and GRNN models used to estimate PM2.5 and NOX), GRNN model yielded better statistical significance as compared with GLM.
        4,000원
        33.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Particulate matter (PM) has recently been considered one of the most harmful air pollutants to public health. Plants have been known to degrade and deposit particle pollutants with epicuticular wax (EW), and this capacity can be influenced by environmental conditions including relative humidity (RH). The present study examined the effects of RH on EW generation and PM deposition upon leaf surfaces within Asplenium nidus ‘Avis’. The plants were treated in growth chambers with two levels of RH (low: 30% - 40% and high: 80% - 90%) for a period of four weeks, and subsequently exposed to a 30 μg・m-3 concentration of TiO2 particles as a PM resource for 72 hours. The EW ultrastructure on the leaf surface was observed as the thin films type, which was not morphologically changed in the condition of low or high RH treatment. For four weeks of RH treatment, the fresh weight and leaf area per plant were not significant between low and high RH treatment, while dry weight was significantly higher in the high RH condition. We also found that greater amounts of EW per fresh weight, dry weight and leaf area were generated in high RH. However, the total amounts of PM deposition (surface PM + in-wax PM) of the plants were higher within the low RH treatment with a higher proportion of surface PM. In contrast the proportion of in-wax PM was 15% higher within the high RH. These results suggest that EW generation is affected by air humidity and that proportion of PM deposition in the EW layer were influenced by the amount of total wax load.
        4,000원
        34.
        2020.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, the importance of air filters used in air purifiers and ventilation systems is emphasized in Korea. As a result, air filter test reports are required by users to ensure the removal efficiency of particulate matter. However, the tests are conducted for the filter material alone, which lead to a possible discrepancy between the test report and actual efficiency when applied to actual devices. Therefore, in this study, the removal efficiency data of the filter test reports were compared with actual filter efficiency data after application to the ventilation systems for some ventilation systems in the market. For ventilation system A, the field test results using filter leakage test method were slightly lower than those in the test report but nearly the same. For ventilation system B, the field test result was much higher than reported in the test report. This was due to the broad range of particle sizes measured using the filter leakage test method. The field tests using the particle counter method showed that the removal efficiency of ventilation system A for 0.3 μm was under 50% which translates to less than half of those of the filter test reports. For ventilation system B, the removal efficiency was 15%~21%. much lower than reported in the filter test reports. The lower removal efficiencys are mainly assumed to be caused by leakage of the filter installation among other factors. Therefore, the field test methods for the particulate matter removal efficiency of ventilation systems should be established to verify actual efficiency and improve the efficiency in the future.
        4,000원
        35.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: Nitrogen oxide (NOx) is a particulate matter precursor, which is a harmful gas contributing to air pollution and causes acid rain. The approaching methods for NOx removal from the air are the focus of numerous researchers worldwide. Titanium dioxide (TiO2) and activated carbon are particularly useful materials for NOx removal. The mechanism of NOx elimination by using TiO2 requires sunlight for a photocatalytic reaction, while activated carbon absorbs the NOx particle into the pore itself after contact with the atmosphere. The mixing method of these two materials with concrete, coating, and penetration methods on the surface is an alternative method for NOx removal. However, this mixing method is not as efficient as the coating and penetration methods because the TiO2 and the activated carbon inside the concrete cannot come in contact with sunlight and air, respectively. Hence, the coating and penetration methods may be effective solutions for directly exposing these materials to the environment. However, the coating method requires surface pretreatment, such as milling, prior to securing contact, and this may not satisfy economic considerations. Therefore, this study aims to apply TiO2 and activated carbon on the concrete surface by using the penetration method. METHODS : Surface penetrants, namely silane siloxane and silicate, were used in this study. Photocatalyst TiO2 and adsorbent activated carbons were selected. TiO2 was formed by the crystal structures of anatase and rutile, while the activated carbons were plant- and coal-type materials. Each penetrant was mixed with each particulate matter reductant. The mixtures were sprayed on the concrete surface using concentration ratios of 8:2 and 9:1. A scanning electron microscopy with energy dispersive X-ray equipment was employed to measure the penetration depth of each specimen. The optimum concentration ratio was selected based on the penetration depth. RESULTS: TiO2 and activated carbon were penetrated within 1 mm from the concrete surface. This TiO2 distribution was acceptable because TiO2 and activated carbon locate to where they can directly come in contact with sunlight and air pollutant, respectively. Infiltration to the concrete surface was easily achieved because the concrete voids were bigger than the nanosized TiO2 and microsized activated carbon. The amount of penetration for each particulate matter reductant was measured from the concrete surface to a certain depth. CONCLUSIONS : The mass ratio on the surface can be predicted from the mass ratio of the particulate matter reductant measurement distributed through the penetration depth. The optimum mass ratio was also presented. Moreover, the mixtures of TiO2 with silane siloxane and activated carbon with silicate were recommended with an 8:2 concentration ratio.
        4,900원
        36.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, a number of researchers have produced research and reports in order to forecast more exactly air quality such as particulate matter and odor. However, such research mainly focuses on the atmospheric diffusion models that have been used for the air quality prediction in environmental engineering area. Even though it has various merits, it has some limitation in that it uses very limited spatial attributes such as geographical attributes. Thus, we propose the new approach to forecast an air quality using a deep learning based ensemble model combining temporal and spatial predictor. The temporal predictor employs the RNN LSTM and the spatial predictor is based on the geographically weighted regression model. The ensemble model also uses the RNN LSTM that combines two models with stacking structure. The ensemble model is capable of inferring the air quality of the areas without air quality monitoring station, and even forecasting future air quality. We installed the IoT sensors measuring PM2.5, PM10, H2S, NH3, VOC at the 8 stations in Jeonju in order to gather air quality data. The numerical results showed that our new model has very exact prediction capability with comparison to the real measured data. It implies that the spatial attributes should be considered to more exact air quality prediction.
        4,000원
        37.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In South Korea, Particulate matter (PM) has become one of the major threats to public health and safety across the country. Urban forests have been considered as a possible contributor to mitigate the air pollutants in urban areas. However, there is lack of research on investigating the role of urban forests on mitigating PM. This study investigated on the relationship between urban forests and PM concentrations in Seoul, South Korea, by using urban forest data, PM measurements, satellite imagery, and meteorological data. The correlation between the size of urban forests and PM measurements within three concentric buffers of 1 km, 500 m, and 300 m in radius were analyzed. Overall PM10 and PM2.5 concentrations varied significantly with different seasons during the 2-year study period. Overall PM10 and PM2.5 concentrations tended to be reduced as the urban forest size increased. This tendency became less noticeable as smaller urban forest patches were predominant over larger patches in the buffers. Season-specific models were developed by using 30m-resolution satellite imageries of Landsat 8 and meteorological parameters for estimating PM concentrations. No noticeable correlations were found between the modeled PM concentrations and the Urban forest size showing the ualves of Pearson’s coefficient r of 0.08 to 0.23 for PM10 and -0.16 to 0.04 for PM2.5. In this study, the variations in PM measurements with the presence of high urban forests within buffers were investigated. Overall PM10 and PM2.5 concentrations were lower along the domains encompassing higher urban forests in elevation.
        4,200원
        38.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 선박용 디젤엔진의 미세먼지저감 장치에 장착된 다공판 및 믹서의 형상과 배치에 따른 압력강하와 유동균일도 특성에 대한 연구를 진행하였다. 미세먼지저감 장치에 장착된 다공판 및 믹서는 미세먼지저감 장치 내의 배출가스 및 산화/환원제의 유동 균일도를 높여 배출가스 저감 성능을 높이는 긍정적인 효과와 함께 시스템의 배압을 상승시키는 부정적인 효과도 동시에 지니고 있다. 본 연구에서는 5개의 다공판, 1개의 믹서를 Case 별로 조합하여 6개의 사양에 대해서 유동해석을 통해 각각 유동균일도 및 압력 강하를 계산하였으며, 최적의 다공판 및 믹서의 형상과 배치를 선정하였다.
        4,000원
        39.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The goal of this study was to measure the indoor and outdoor fine and ultrafine particulate matter concentrations (PM10, PM1.0) of some houses in Yeosu and in S university in Asan from March to September 2018. PM10 concentration in indoor air in Yeosu area was 18.25 μg/m3, while for outdoor air it was 14.53 μg/m3. PM1.0 concentration in indoor air in the Asan area was 1.70 μg/m3, while for outdoor air it was 1.76 μg/m3, showing a similar trend. Heavy metal concentrations in the Yeosu region were the highest, at Mn 2.81 μg/m3, Cr 1.30 μg/ m3, and Ni 1.11 μg/m3 indoors. Outside, similar concentrations were found, at Cr 3.44 μg/m3, Mn, 2.60 μg/m3, and Ni 1.71 μg/m3. Our analysis of indoor and outdoor PM concentrations in the Asan region, which was carried out using the MOUDI (Micro-orifice Uniform Deposit Impactor) technique, found that PM concentration is related to each particle size concentration, as the concentration of 18 μm and 18-10 μm inside tends to increase by 3.2- 1.8 μm and 0.56-0.32 μm.
        4,000원
        40.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: The purpose of this study is to analyze characteristics of concentrations of fine particulate matter (PM2.5) among 3 different types of bus stops, specifically partially closed bus stop with front & back partition, partially closed bus stop with back partition, and bus stop with open space (referred to as bus stop types Ⅰ, Ⅱ, and Ⅲ, respectively) at urban roadside, using the Anderson-Darling test as statistical method. METHODS: For the purpose of this study, first of all, data on concentrations of PM2.5 on the 3 types of bus stops at urban roadside were acquired for certain days, with different levels of air quality index (AQI). Secondly, this study accomplished the data processing of removing outliers from acquired data, and the Anderson-Darling test was conducted to estimate probabilities of occurrence for concentrations of PM2.5 in the 3 types of bus stops. RESULTS : The average concentrations of PM2.5 for AQI‘ Very High’for bus stop types Ⅰ, Ⅱand Ⅲare 46-179㎍/m3, 66-194㎍/m3, 42- 134㎍/m3, respectively, and for AQI ‘High’for bus stop typesⅠ, Ⅱ and Ⅲ are 16-71㎍/m3, 26-84㎍/m3, and 14-69㎍/m3, respectively. Furthermore, probabilities of occurrence for concentration levels of PM2.5 in AQI were estimated for given measurement dates using the Anderson-Darling test as statistical method. As a result, for AQI ‘Very High,’the probabilities of occurrence for concentration levels ‘Very High’and‘ High’were determined more likely to occur regardless of bus stop type. With respect to each type of bus stop, the probabilities of ‘Very High’for bus stop type Ⅱ were 93.37% and 98.92%, higher than for the other bus stop types. For AQI ‘High’the probabilities of occurrence for concentration levels‘ Good’were found to be very low, at 0.00% to 3.07%, and occurred mainly for‘ Moderate’and‘ High’in this study. In particular, the probabilities of occurrence for concentration level‘ High’for bus stop type Ⅱwere analyzed to be greater than 90%, compared to those for the other bus stop types. CONCLUSIONS: Based on the result of this study, when PM2.5 is analyzed on certain days, probabilities of occurrence for concentration levels in AQI should be considered for each type of bus stop.
        4,300원
        1 2 3 4 5